Riemannsches Integral
Das riemannsche Integral (auch Riemann-Integral) ist eine nach dem deutschen Mathematiker Bernhard Riemann benannte Methode zur Präzisierung der anschaulichen Vorstellung des Flächeninhaltes zwischen der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} -Achse und dem Graphen einer Funktion. Der riemannsche Integralbegriff gehört neben dem allgemeineren lebesgueschen zu den beiden klassischen der Analysis. In vielen Anwendungen werden nur Integrale von stetigen oder stückweise stetigen Funktionen benötigt. Dann genügt der etwas einfachere, aber weniger allgemeine Begriff des Integrals von Regelfunktionen.
Das dem riemannschen Integral zugrundeliegende Konzept besteht darin, den gesuchten Flächeninhalt mit Hilfe des leicht zu berechnenden Flächeninhalts von Rechtecken anzunähern. Man geht dabei so vor, dass man in jedem Schritt zwei Familien von Rechtecken so wählt, dass der Graph der Funktion „zwischen“ ihnen liegt. Indem man sukzessive die Anzahl der Rechtecke erhöht, erhält man mit der Zeit eine immer genauere Annäherung des Funktionsgraphen durch die zu den Rechtecken gehörenden Treppenfunktionen. Entsprechend lässt sich der Flächeninhalt zwischen dem Graphen und der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} -Achse durch die Flächeninhalte der Rechtecke approximieren.
Definitionen
Es gibt im Wesentlichen zwei gängige Verfahren zur Definition des Riemann-Integrals:
- das Jean Gaston Darboux zugeschriebene Verfahren mittels Ober- und Untersummen und
- Riemanns ursprüngliches Verfahren mittels Riemann-Summen.
Die beiden Definitionen sind äquivalent: Jede Funktion ist genau dann im darbouxschen Sinne integrierbar, wenn sie im riemannschen Sinne integrierbar ist; in diesem Fall stimmen die Werte der beiden Integrale überein. In typischen Analysis-Einführungen, vor allem in der Schule, wird heute weitgehend die Darbouxsche Formulierung zur Definition benutzt. Riemannsche Summen treten oft als weiteres Hilfsmittel hinzu, etwa zum Beweis des Hauptsatzes der Integral- und Differenzialrechnung.
Ober- und Untersummen
Dieser Zugang wird meist Jean Gaston Darboux zugeschrieben.
Das Integrationsintervall wird hierbei in kleinere Stücke zerlegt, der gesuchte Flächeninhalt zerfällt dabei in senkrechte Streifen. Für jeden dieser Streifen wird nun einerseits das größte Rechteck betrachtet, das von der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} -Achse ausgehend den Graphen nicht schneidet (im Bild grün), und andererseits das kleinste Rechteck, das von der -Achse ausgehend den Graphen ganz umfasst (im Bild jeweils das grüne Rechteck zusammen mit der grauen Ergänzung darüber). Die Summe der Flächeninhalte der großen Rechtecke wird als Obersumme, die der kleinen als Untersumme bezeichnet. Kann man durch geeignete, ausreichend feine Unterteilung des Integrationsintervalles den Unterschied zwischen Ober- und Untersumme beliebig klein machen, so gibt es nur eine Zahl, die kleiner oder gleich jeder Obersumme und größer oder gleich jeder Untersumme ist, und diese Zahl ist der gesuchte Flächeninhalt, das riemannsche Integral.
Für die mathematische Präzisierung seien im Folgenden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} ein Intervall und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon[a,b]\to\R} eine beschränkte Funktion.
Unter einer Zerlegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Teile versteht man eine endliche Folge mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a=x_0<x_1<\dotsb<x_n=b} . Dann werden die zu dieser Zerlegung gehörende Ober- und Untersumme definiert als
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(Z):=\sum_{k=1}^n \Big( (x_k-x_{k-1})\cdot\inf_{x_{k-1}<x<x_k}f(x) \Big)} .
Die Funktion wird dabei durch die Treppenfunktion ersetzt, die auf jedem Teilintervall konstant gleich dem Supremum beziehungsweise Infimum der Funktion auf diesem Intervall ist.
Bei einer Verfeinerung der Zerlegung wird die Obersumme kleiner, die Untersumme größer (oder sie bleiben gleich). Einer „unendlich feinen“ Zerlegung entsprechen also Infimum der Obersummen sowie Supremum der Untersummen; diese werden als oberes beziehungsweise unteres darbouxsches Integral von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} bezeichnet:
- .
Es werden also jeweils alle möglichen Zerlegungen des Intervalls in eine beliebige endliche Anzahl von Teilintervallen betrachtet.
Es gilt stets
Gilt Gleichheit, so heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} Riemann-integrierbar (oder Darboux-integrierbar), und der gemeinsame Wert
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_a^bf(x)\,\mathrm dx:=\underline{\int_a^b}f(x)\,\mathrm dx=\overline{\int_a^b}f(x)\,\mathrm dx}
heißt das riemannsche Integral (oder Darboux-Integral) von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} über dem Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} .
Riemann-Summen
Der obige Zugang zum Riemann-Integral über Ober- und Untersummen stammt, wie dort beschrieben, nicht von Riemann selbst, sondern von Jean Gaston Darboux. Riemann untersuchte zu einer Zerlegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z = \{ a = x_0, x_1, \dotsc,x_n = b\}} des Intervalls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} und zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z} gehörigen Zwischenstellen Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle t_{i}\in [x_{i-1},x_{i}](i=1,\dotsc ,n)} Summen der Form
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S(f, Z, t_1,\dotsc,t_n) = \sum_{i=1}^n f(t_i) (x_i - x_{i-1}),}
auch als Riemann-Summen oder riemannsche Zwischensummen bezüglich der Zerlegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z} und den Zwischenstellen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_1,\dotsc,t_n} bezeichnet. Riemann nannte eine Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} über dem Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} integrierbar, wenn sich die Riemann-Summen bezüglich beliebiger Zerlegungen unabhängig von den gewählten Zwischenstellen einer festen Zahl beliebig nähern, sofern man die Zerlegungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z} nur hinreichend fein wählt. Die Feinheit einer Zerlegung Z wird dabei über die Länge des größten Teilintervalls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [x_{i-1}, x_i]} , das durch Z gegeben ist, gemessen, also durch die Zahl:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(Z) = \max \{ x_{i} - x_{i-1} : i=1,\dotsc,n\}.}
Die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} ist dann das Riemann-Integral von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} . Ersetzt man die Veranschaulichungen „hinreichend fein“ und „beliebig nähern“ durch eine präzise Formulierung, so lässt sich diese Idee wie folgt formalisieren.
Eine Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon [a,b] \rightarrow \mathbb R} heißt über dem Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} Riemann-integrierbar, wenn es zu einer festen Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} und zu jedem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon > 0} ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta > 0} gibt, so dass für jede Zerlegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(Z) < \delta} und für beliebige zu gehörige Zwischenstellen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_1,\dotsc,t_n}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |S(f, Z, t_1,\dotsc,t_n) - A | < \varepsilon}
gilt. Die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} heißt dann das Riemann-Integral von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} und man schreibt dafür
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = \int_a^b f} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \displaystyle A = \int_a^b f(x) \; \mathrm dx} .
Riemann-Integrierbarkeit
Lebesgue-Kriterium
Eine auf einem kompakten Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} beschränkte Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} ist nach dem Lebesgue'schen Kriterium für Riemann-Integrierbarkeit genau dann auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} Riemann-integrierbar, falls sie auf diesem Intervall fast überall stetig ist. Falls die Funktion Riemann-integrierbar ist, so ist sie auch Lebesgue-integrierbar und beide Integrale sind identisch.
Insbesondere ist über einem kompakten Intervall jede Regelfunktion, jede monoton wachsende oder monoton fallende Funktion und jede stetige Funktion Riemann-integrierbar.
Beispiele
Die Funktion mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) = \begin{cases} 1 & ~\text{falls}~ x=0 \\ \frac 1 q & ~\text{falls}~ x=\frac r q ~\text{mit}~ r,q \in \N ~\text{teilerfremd} \\ 0 & ~\text{falls}~ x \in \R \setminus \Q \end{cases}}
ist stetig in allen irrationalen Zahlen und unstetig in allen rationalen Zahlen. Die Menge der Unstetigkeitsstellen liegt zwar dicht im Definitionsbereich, da diese Menge aber abzählbar ist, ist sie eine Nullmenge. Die Funktion ist damit Riemann-integrierbar.
Die Dirichlet-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g \colon [0,1] \to [0,1]} mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g(x) = \begin{cases} 1 & ~\text{falls}~ x \in \Q \\ 0 & ~\text{falls}~ x \in \R \setminus \Q \end{cases}}
ist nirgendwo stetig, sie ist also nicht Riemann-integrierbar. Sie ist aber Lebesgue-integrierbar, da sie fast überall Null ist.
Die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h \colon [-1,1] \to [0,1]} mit
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle h(x)={\begin{cases}1&~{\text{falls}}~x\in \{{\frac {1}{n}}\mid n\in \mathbb {N} \}\\0&~{\text{sonst}}~\end{cases}}}
hat abzählbar viele Unstetigkeitsstellen, ist also Riemann-integrierbar. Bei Null existiert der rechtsseitige Grenzwert nicht. Die Funktion hat dort daher eine Unstetigkeitsstelle der zweiten Art. Die Funktion ist somit keine Regelfunktion, das heißt, sie lässt sich nicht gleichmäßig durch Treppenfunktionen approximieren. Das Riemann-Integral erweitert also das Integral, das über den Grenzwert von Treppenfunktionen von Regelfunktionen definiert ist.
Uneigentliche Riemann-Integrale
Als uneigentliche Riemann-Integrale bezeichnet man:
- Integrale mit den Intervallgrenzen oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \infty} ; dabei ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_{a}^\infty f(x) \,\mathrm{d}x = \lim_{\beta \to \infty}\int_a^{\beta}f(x) \,\mathrm{d}x} ,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_{-\infty}^{b}f(x)\,\mathrm{d}x = \lim_{\alpha \to -\infty}\int_\alpha^b f(x) \,\mathrm{d}x} und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_{-\infty}^{\infty} f(x) \,\mathrm{d}x = \int_{-\infty}^{a}f(x)\,\mathrm{d}x+\int_{a}^\infty f(x) \,\mathrm{d}x} mit beliebigem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\in\mathbb{R}.}
- Integrale mit unbeschränkten Funktionen in einer der Intervallgrenzen; dabei ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_a^b f(x) \,\mathrm{d}x = \lim_{\varepsilon \searrow 0} \int_{a+\varepsilon}^b f(x) \,\mathrm{d}x} bzw. Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \displaystyle \int _{a}^{b}f(x)\,\mathrm {d} x=\lim _{\varepsilon \searrow 0}\int _{a}^{b-\varepsilon }f(x)\,\mathrm {d} x.}
Mehrdimensionales riemannsches Integral
Das mehrdimensionale Riemann-Integral basiert auf dem Jordan-Maß. Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_n} das n-dimensionale Jordan-Maß und sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E \subset \R^n} eine Jordan-messbare Teilmenge. Außerdem sei Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \tau =(E_{i})_{i=0}^{k}} eine endliche Folge von Teilmengen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle\bigcup\nolimits_{i=0}^k E_i = E} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_n(E_i \cap E_j) = 0} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i \neq j} und sei weiter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \operatorname{diam}(A) = \sup_{a,b \in \overline{A}}^{\,}(\|a-b\|)} die Funktion, welche die maximale Distanz in einer Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} zurückgibt. Setze nun
- .
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon E \to \R} eine Funktion, dann heißt die Summe
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho_\tau(f,\xi^{(0)},\dotsc , \xi^{(k)}) = \sum_{i=0}^{k(\delta_\tau)} f(\xi^{(i)})\mu_n(E_i)}
riemannsche Zerlegung der Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} .
Existiert der Grenzwert
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{\delta_\tau \to 0}\rho_\tau(f,\xi^{(0)},\dotsc, \xi^{(k)}) = \lim_{\delta_\tau \to 0} \sum_{i=0}^{k(\delta_\tau)} f(\xi^{(i)})\mu_n(E_i)} ,
so ist die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} Riemann-integrierbar und man setzt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_E f(x) \mathrm{d} x = \lim_{\delta_\tau \to 0} \sum_{i=0}^{k(\delta_\tau)} f(\xi^{(i)})\mu_n(E_i)} .
Dieser Integralbegriff hat die gewöhnlichen Eigenschaften eines Integrals, die Integralfunktion ist linear und es gilt der Satz von Fubini.
Herleitung des Riemann-Integral aus dem Differentialquotienten
Ausgangspunkt für die Herleitung des Riemann-Integrals ist hierbei die Formel für die Ableitung einer Funktion, welche als Grenzwert des Differentialquotienten definiert ist:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)=\frac{\mathrm{d}F(x)}{\mathrm{d}x}=\lim_{\Delta x \to 0} \frac{F(x+\Delta x)-F(x)}{\Delta x}}
Hierbei ist die Ableitung der Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} . Für sehr kleine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta x} und durch einfache Umformung der Gleichung geht hierdurch der folgende Ausdruck hervor:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x+\Delta x)-F(x)\approx f(x)\;\Delta x}
Dieser Ausdruck wird nun an den Stellen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=x_0+k\Delta x} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \in \{0,1,...,n-1\}} und ausgewertet. Damit folgen die Ausdrücke:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcr} F(x_0+\Delta x)\;\,-F(x_0)&\approx&f(x_0)\;\Delta x \qquad\qquad\qquad (1)\\ F(x_0+2\Delta x)-F(x_0+\Delta x)&\approx&f(x_0+\Delta x)\;\Delta x \qquad\qquad\qquad (2)\\ F(x_0+3\Delta x)-F(x_0+2\Delta x)&\approx&f(x_0+2\Delta x)\;\Delta x \qquad\qquad\qquad (3)\\ &\vdots&\\ F(x_0+n\Delta x)-F(x_0+(n-1)\Delta x)&\approx&f(x_0+(n-1)\Delta x)\;\Delta x \qquad\qquad\qquad (n)\\ \end{array}}
Addition der Ausdrücke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1)+(2)+(3)+\cdots+(n)} ergibt somit:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x_0+n\Delta x)-F(x_0) \approx \sum_{k=0}^{n-1}f(x_0+k\Delta x)\;\Delta x}
Nun werden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a:=x_0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b:=x_0+n\Delta x} definiert und es folgt über weitere Umformungsschritte:
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle F(b)-F(a)\approx \sum _{k=0}^{{\frac {b-a}{\Delta x}}-1}f\left(({\frac {a}{\Delta x}}+k)\Delta x\right)\Delta x=\sum _{k={\frac {a}{\Delta x}}}^{{\frac {b}{\Delta x}}-1}f(k\Delta x)\;\Delta x}
Durch die Bildung des Grenzwerts Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta x \to \mathrm{d}x} folgt damit:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(b)-F(a) = \int_a^b f(x)\; \mathrm{d}x = \lim_{\Delta x \rightarrow \mathrm{d}x}\sum_{k=\frac{a}{\Delta x}}^{\frac{b}{\Delta x}}f(k\Delta x)\;\Delta x = \sum_{k=\frac{a}{\mathrm{d}x}}^{\frac{b}{\mathrm{d}x}}f(k\;\mathrm{d}x)\;\mathrm{d}x}
Das Riemann-Integral kann somit als unendlich feine Summe über alle Funktionswerte im Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} , welche jeweils mit dem infinitesimal kleinen Inkrement gewichtet sind, interpretiert werden. Die Bedeutung des in der üblichen Schreibweise für das Integral vorkommenden Inkrements Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}x} wird zudem mittels dieser Herleitung verdeutlicht.
Annäherung des Riemann-Integrals mit der hergeleiteten Formel
Zur Veranschaulichung der Funktionsweise der hergeleiteten Formel soll hier beispielhaft das Riemann-Integral der Funktion im Intervall mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta x = 1/10} angenähert werden. Einsetzen in die Formel ergibt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{k=10}^{29}\left(\frac{k}{10}\right)^2 \frac{1}{10}= \left(\frac{10}{10}\right)^2 \frac{1}{10}+\left(\frac{11}{10}\right)^2 \frac{1}{10}+\cdots+\left(\frac{28}{10}\right)^2 \frac{1}{10}+\left(\frac{29}{10}\right)^2 \frac{1}{10}=8,27\approx 8,\bar{6} = \int_1^3 x^2 \; \mathrm{d}x}
Es zeigt sich, dass hierbei 20 aneinander liegende Rechtecke aufsummiert werden, die eine Breite von 1/10 besitzen und so hoch sind, dass jeweils die linke obere Ecke des Rechtecks den Graphen der Funktion berühren. Intuitiv lässt sich schlussfolgern, dass für die berechnete Fläche gegen das Riemann-Integral konvergiert, da die Anzahl an Rechtecken gegen Unendlich geht und die Fläche unter dem Graphen somit perfekt beschrieben wird.
Exemplarische Berechnung einer Stammfunktion mit der hergeleiteten Formel
Mit der hier hergeleiteten Formel kann zudem eine Stammfunktion einer Funktion berechnet werden, indem die obere Intervallgrenze variiert wird. Exemplarisch soll dies mit der Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\xi) = \xi} auf dem Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [0,x]} gezeigt werden:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x)-F(0) = \lim_{\Delta x \rightarrow 0}\sum_{k=0}^{\frac{x}{\Delta x}}k\Delta x\;\Delta x = \lim_{\Delta x \rightarrow 0}\left(\underbrace{0\Delta x+ 1\Delta x + 2\Delta x+..}_{=0}\,.+(x-2)+(x-1)+(x-0)\right)\Delta x= \lim_{\Delta x \rightarrow 0}\left(.\underbrace{..+x+x+x}_{\frac{1}{2}\frac{x}{\Delta x}\;\mathrm{mal}}\right)\Delta x+.\underbrace{..-2\Delta x -1\Delta x-0\Delta x}_{=0}= \lim_{\Delta x \rightarrow 0}\left(\frac{1}{2}\frac{x}{\Delta x}x\right)\Delta x = \frac{1}{2}x^2= F(x) }
Birkhoff-Integral
Eine Verallgemeinerung des Riemann-Integrals für Banachraum-wertige Funktionen stellt das Birkhoff-Integral dar. Dieses verallgemeinert insbesondere den Zugang über Riemann-Summen.
Quellen
- Bernhard Riemann: Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe. 1854 (Habilitationsschrift mit Begründung des nach ihm benannten Integralbegriffs).
- Harro Heuser: Lehrbuch der Analysis 1. 9. Auflage. Teubner, Stuttgart 1991, ISBN 3-519-22231-0 (insbesondere Abschnitt 82).
- Douglas S. Kurtz, Charles W. Swartz: Theories of Integration. World Scientific, New Jersey 2004, ISBN 981-256-611-2.
Weblinks
- Visualisierung des riemannschen Integrals bei GeoGebra
- Visualisierung des riemannschen Integrals bei Visual Calculus
- Visualisierung des riemannschen Integrals auf mathe-online
- Mehrdimensionale Integrale bei Springer