SU(2)

aus Wikipedia, der freien Enzyklopädie

In der Mathematik ist die spezielle unitäre Gruppe der Ordnung 2, d. h. die lineare Gruppe der unitären -Matrizen mit Determinante 1. Sie ist (zusammen mit der Drehgruppe , deren zweifache Überlagerung sie ist) die einfachste nichtabelsche kompakte Lie-Gruppe.

Die Gruppe spielt eine wichtige Rolle in der Physik, unter anderem im Standardmodell der Elementarteilchenphysik und in der Quantenmechanik, wo sie auch als komplexe Dreh-Gruppe (Gruppe der „komplexen Drehungen“ des zweidimensionalen komplexen Raumes ) oder Spin-Gruppe bezeichnet wird. Bündel mit Strukturgruppe werden in der Theorie der 4-Mannigfaltigkeiten zur Definition der Donaldson-Invarianten[1] und in der Theorie der 3-Mannigfaltigkeiten zur Definition der Casson-Invariante und der Instanton-Floer-Homologie[2][3] verwendet.

Definition

Die ist die Gruppe der unitären -Matrizen mit Determinante 1:

.

Alle Matrizen aus sind von der Form

mit .

ist eine Lie-Gruppe. Sie ist die einfachste nichtabelsche Lie-Gruppe.

Die Lie-Algebra der Lie-Gruppe ist die Lie-Algebra der schiefhermiteschen -Matrizen

.

Alle Matrizen aus sind von der Form

mit .

Topologie

  • Die Lie-Gruppe ist eine kompakte Lie-Gruppe.
.

SU(2) als Spin-Gruppe

ist eine 2-fache Überlagerung der Drehgruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SO}(3)} , sie realisiert also die Spin-Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Spin}(3)} . Die natürliche Operation von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex^2} ist eine sog. Spinordarstellung.

Explizit wird die Überlagerung gegeben durch die adjungierte Darstellung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)} auf ihrer 3-dimensionalen Lie-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{su}(2)} . Diese lässt die Killing-Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} und damit auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -B} invariant. Weil Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -B} positiv definit ist, ist die Gruppe der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -B} erhaltenden linearen Abbildungen isomorph zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O(3)} . Man kann zeigen, dass die so definierte Abbildung eine 2-fache Überlagerung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)\to \operatorname{SO}(3)} definiert.

Pauli-Matrizen und Komplexe Drehungen

Die Pauli-Matrizen lauten

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_1 = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix},\quad \sigma_2 = \begin{pmatrix} 0 & -\mathrm i\\ \mathrm i & 0 \end{pmatrix},\quad \sigma_3 = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}. }

Die imaginären Vielfachen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm i\sigma_j, j=1,2,3} sind Elemente der Lie-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{su}(2)} . Es gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2) = \left\{\left.\exp\left(-\tfrac{\mathrm i}{2}\vec\alpha\cdot\vec\sigma\right) \right| \vec\alpha \in \R^3 \right\} }

mit reellen Vektorkomponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha_1,\, \alpha_2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha_3} , den „Drehwinkeln“  (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha_3} durchläuft beispielsweise das Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [-2\pi,+2\pi ]} ), und mit den in die drei Pauli-Matrizen umgewandelten Basiselementen der Quaternionen, also dem aus den drei 2x2-Pauli-Matrizen gebildeten formalen Drei-Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec \sigma}  (in der Sprache der Physik: „dem doppelten(!) [4] Spindrehimpuls-Operator“). Der Punkt bedeutet das formale Skalarprodukt, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec \alpha\cdot\vec \sigma =\alpha_1\sigma_1+\alpha_2\sigma_2+\alpha_3\sigma_3} . Der scheinbar nur physikalisch motivierte Faktor 1/2 hat mathematisch u. a. zur Folge, dass sich die Spinoren im Gegensatz zu Vektoren nicht schon bei Drehungen um 2π  (=360 o), sondern erst bei dem doppelten  Wert reproduzieren. Dagegen erhält man die gewöhnliche Drehgruppe im dreidimensionalen reellen Raum, die SO(3), indem man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\vec\sigma}/2} durch den Ortsdrehimpuls-Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{\mathcal L}} ersetzt (ausgedrückt durch Differentialquotienten, z. B. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal L_3= \tfrac{\partial }{\mathrm i\,\partial\varphi}} ). Dabei wurde Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hbar} , die reduzierte Plancksche Konstante, wie üblich durch Eins ersetzt, und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} ist der Azimutalwinkel (Drehung um die z-Achse). Jetzt reicht die Drehung um 360 o aus, um eine gewöhnliche Funktion – statt eines Spinors – zu reproduzieren.

In diesem Sinne wird die Gruppe der komplexen Drehungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)} also von den Pauli-Matrizen „erzeugt“, was in der Quantenmechanik speziell in der Theorie des Spindrehimpulses Anwendung findet.

SU(2) als Gruppe der Einheitsquaternionen

Jede Quaternion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \mathbb{H}} lässt sich eindeutig in der Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0+x_1\mathrm i_\mathbb{H}+x_2\mathrm j_\mathbb{H}+x_3\mathrm k_\mathbb{H}}

mit reellen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_3} schreiben. Der Betrag einer Quaternion ist definiert durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |x| = \sqrt{x_0^2+x_1^2+x_2^2+x_3^2}} .

Die Gruppe der Einheitsquaternionen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{x\in \mathbb{H}: |x| =1\right\}}

ist isomorph zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)} , unter dem Isomorphismus entsprechen sich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},\quad \mathrm i_\mathbb{H} \mapsto \begin{pmatrix} \mathrm i & 0 \\ 0 & -\mathrm i \end{pmatrix},\quad \mathrm j_\mathbb{H} \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},\quad \mathrm k_\mathbb{H} \mapsto \begin{pmatrix} 0 & \mathrm i \\ \mathrm i & 0 \end{pmatrix}} .

Endliche Untergruppen der SU(2)

Die endlichen Untergruppen wurden von Felix Klein klassifiziert.

Jede endliche Untergruppe ist isomorph zu einer der folgenden Untergruppen der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rm{diag}(\exp(2\pi \rm i/\it n\rm ),\exp(-2\pi \rm i/\it n\rm ))} ,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rm{diag}(\exp(\pi \rm i/\it n\rm ),\exp(-\pi \rm i/\it n\rm ))} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\begin{array}{cc}0&\rm i\\ \rm i&0\end{array}\right)} ,
  • dem Urbild der Symmetriegruppe eines der regelmäßigen platonischen Körper (also bis auf Dualität entweder des regelmäßigen Tetraeders, Oktaeders oder Ikosaeders) unter der Überlagerung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)\to \operatorname{SO}(3)} .

Diese Untergruppen entsprechen den Dynkindiagrammen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{n-1}, D_{n+2},E_6,E_7,E_8} . Siehe auch Quaternion#Die endlichen Untergruppen.

Differentialgeometrie

Das negative der Killing-Form definiert eine bi-invariante Riemannsche Metrik auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)} , ihre Schnittkrümmung ist konstant Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1} . Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)} ist also isometrisch zur 3-dimensionalen Einheitssphäre.

Darstellungstheorie

Die Lie-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{su}(2)} ist eine reelle Form der Lie-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{sl}(2,\Complex)} , d. h. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{sl}(2,\Complex)} ist die Komplexifizierung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{su}(2)} . Alle Darstellungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{su}(2)} erhält man also durch Einschränkung von Darstellungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{sl}(2,\Complex)} . Insbesondere folgt aus der Klassifikation der Darstellungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{sl}(2,\Complex)} , dass es zu jeder natürlichen Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} eine bis auf Isomorphie eindeutige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (m+1)} -dimensionale irreduzible Darstellung der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{su}(2)} gibt.

Nach dem Zweiten Lie'schen Satz entsprechen die Lie-Algebren-Darstellungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{su}(2)} genau den Lie-Gruppen-Darstellungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)} . Es gibt also zu jeder natürlichen Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} eine bis auf Isomorphie eindeutige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (m+1)} -dimensionale irreduzible Darstellung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)} . In der Physik wird diese als Spin-Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{m}{2}} -Darstellung bezeichnet.

Eine explizite Realisierung der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (m+1)} -dimensionalen Darstellung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)} geht wie folgt. Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_m} der Vektorraum der komplexwertigen homogenen Polynome vom Grad Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} in zwei Variablen, also der von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^m,x^{m-1}y,\ldots,xy^{m-1},y^m} aufgespannte komplexe Vektorraum. Dann wirkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\in\operatorname{SU}(2)} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_m} durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (AP)(x,y):=P(A^{-1}(x,y))} .

Physik

Die Drehimpulsalgebra ist isomorph zur Komplexifizierung der Lie-Algebra der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)} . Viele physikalische Situationen sind rotations-invariant und lassen sich also als Darstellungen der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SO}(3)} beschreiben, welche in der Regel unendlich-dimensional sind und sich aber in endlich-dimensionale irreduzible Darstellungen zerlegen lassen. Im Falle des Wasserstoffatoms entsprechen die Anzahlen der Zustände gleicher Energie gerade den Dimensionen dieser irreduziblen Darstellungen. Gewisse Effekte lassen sich aber nur erklären, wenn man die Dimensionen verdoppelt, also statt der SO(3)-Darstellungen die durch Tensorieren mit der Standarddarstellung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex^2} entstehenden SU(2)-Darstellungen betrachtet.

Die starke Wechselwirkung und damit das Standardmodell der Elementarteilchenphysik ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SU}(2)} -invariant.

Siehe auch

Literatur

  • Theodor Bröcker, Tammo tom Dieck: Representations of Compact Lie Groups (= Graduate Text im Mathematics. Bd. 98). Springer, New York NY u. a. 1985, ISBN 3-540-13678-9.
  • Walter Pfeifer: The Lie Algebras su(N). An Introduction. Birkhäuser, Basel u. a. 2003, ISBN 3-7643-2418-X.
  • Jean-Marie Normand: A Lie group. Rotations in quantum mechanics. North-Holland Publishing Co., Amsterdam u. a. 1980, ISBN 0-444-86125-4.
  • Max Wagner: Gruppentheoretische Methoden in der Physik. Ein Lehr- und Nachschlagewerk. Friedr. Vieweg & Sohn, Braunschweig 1998, ISBN 3-528-06943-0.

Weblinks

Einzelnachweise

  1. Simon K. Donaldson: Polynomial invariants for smooth four-manifolds. In: Topology. Bd. 29, Nr. 3, 1990, S. 257–315, doi:10.1016/0040-9383(90)90001-Z
  2. Andreas Floer: An instanton-invariant for 3-manifolds. In: Communications in Mathematical Physics. Bd. 118, Nr. 2, 1988, S. 775–813, doi:10.1007/BF01218578
  3. Clifford Henry Taubes: Casson's invariant and gauge theory. In: Journal of differential geometry. Bd. 31, Nr. 2, 1990, S. 547–599, online.
  4. Dass nicht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec\sigma} , sondern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec\sigma /2} der Spindrehimpuls-Operator ist, ergibt sich u. a. aus der zugehörigen Lie-Algebra, der Drehimpulsalgebra.