Schwarmverhalten

aus Wikipedia, der freien Enzyklopädie
Ein Schwarm Atlantischer Heringe (Clupea harengus) auf Wanderung zu den Laichplätzen in der Ostsee. Die hohe Geschwindigkeit kann über Tausende Kilometer durchgehalten werden. Einige Wissenschaftler sind der Meinung, dass die Fortbewegung in geschlossenen Gruppen energiesparend ist.

Schwarmverhalten bezeichnet das Verhalten von Fischen, insbesondere den Schwarmfischen, von Vögeln, Insekten und anderen Tieren, sich zu Aggregationen zusammenzuschließen. Die Individuen in einem Schwarm gehören meist derselben Art an, es können sich jedoch auch gemischte Schwärme aus Tieren unterschiedlicher Arten und Altersstadien bilden. Typische Schwarm-bildende Tiere sind beispielsweise Heringe, Stare und Wanderheuschrecken.

Bei Meeressäugern wie Delfinen, die sich zu einem Verband zusammenschließen, spricht man auch von einer Schule, bei Landsäugetieren von einer Herde. Bei schneller Fortbewegung ist der Fachbegriff Stampede üblich.

Das Phänomen Schwarm und Schwarmverhalten wird in verschiedenen biologischen Disziplinen untersucht, und zwar per Verhaltensanalyse und Modellierung.[1] Forschung findet auch z. B. auch in der Informatik (siehe Partikelschwarmoptimierung). Anwendungen gibt es in der Computergrafik (siehe Partikelsystem) und beim Militär.

In der Natur (Tierwelt)

Vorteile der Schwarmbildung ergeben sich für Tiere bei der Nahrungssuche. Aggregationen zu bilden schützt auch vor möglichen Fressfeinden, z. B. durch kollektive Wachsamkeit und/oder Irritation des Beutegreifers.[2] Immer bewegen sich die Individuen des Schwarmes gemeinsam in eine Richtung. Für die gleichgerichtete Orientierung sind etwa bei Staren die unmittelbaren Nachbarn wichtig.[3] Die neurophysiologische Basis der Fähigkeit, sich synchron zu bewegen, wird in den Spiegelneuronen vermutet.

Der Physiker und Vogelforscher Andrea Cavagna hat die riesigen Starenschwärme in Rom untersucht.[3][4] Er stellte fest, dass Vögel sich an den sechs bis sieben Nachbarvögeln ausrichten, was der höchsten Zahl entspricht, die diese Vögel unterscheiden können. Generell halten sie mindestens eine Flügelspanne Abstand zueinander. Eine Richtungsänderungen des Schwarms entscheidet sich nicht unbedingt an der Schwarmspitze. Offenbar kann jedes Individuum eine Richtungsänderung hervorrufen, und der ganze Schwarm organisiert sich hierdurch um.

Bei Annäherung von Greifvögeln verdichtet sich der Schwarm, um das Anvisieren eines Individuums und die gezielte Attacke zu erschweren. Manchmal wird sogar der Greifvogel vom Schwarm so eingeschlossen, dass dieser sich flugunfähig abfallen lassen muss. Stört ein Greifvogel den schwarmauflösenden Anflug zum Schlafplatz, steigt der Schwarm wieder auf und bleibt oft bis zum Einsetzen der Dunkelheit in der Luft.[5]

Gänse an der Müritz

Viele Vogelarten fliegen allerdings nicht in Schwärmen, sondern in V-förmigen Zügen oder, wie die Kraniche, in langen Ketten schräg hintereinander. Auch ihr Verhalten wird mittels Computermodellen erforscht.[6]

Algorithmen (Modellierung)

Regeln für Schwarmbildung

Fledermäuse verlassen eine Höhle in Thailand kurz vor Sonnenuntergang

Datei:Mueckenschwarm 50p 1600kbit.ogv

Bienenschwarm

Wie Schwärme gebildet und zusammengehalten werden, ergaben Computersimulationen von Craig Reynolds, der diese 1986 zum ersten Mal modelliert hat.[7] Schwarmverhalten basiert demnach auf drei Regeln, die die einzelnen Agenten (Individuen / Boids) beachten:

  1. Bewege dich in Richtung des Mittelpunkts derer, die du in deinem Umfeld siehst (Kohäsion).
  2. Bewege dich weg, sobald dir jemand zu nahe kommt (Separation).
  3. Bewege dich in etwa in dieselbe Richtung wie deine Nachbarn (Alignment).

Als Folge dieser Regeln auf Individuenebene entsteht eine Gesamtstruktur, nämlich der selbstorganisierte Schwarm. Man spricht von Emergenz.

Algorithmische Komplexität

In einer Anwendung, die Schwarmverhalten simuliert, gibt es keine zentrale Steuerung für die einzelnen Individuen. Für jedes Individuum muss die nächste Position separat berechnet werden. Daraus ergibt sich nach der O-Notation ein O(n²)- Algorithmus mit einer Rechenzeit von bei n Individuen. Es gibt verschiedene Ansätze, um die Rechenzeit bei variierender Anzahl Individuen konstant zu halten oder wenigstens die Rechenzeit eines O(n²)- Algorithmus zu verringern.

Schon Reynolds versuchte, zu diesem Zweck ein 3D-Gitterwerk zu implementieren, in dem seine Boids basierend auf ihrer Position in Behälter verteilt werden. Über dieses Gitterwerk können die Boids schnell die Behälter in ihrem Umfeld auf Nachbarn überprüfen, was die Laufzeit des Algorithmus verringert.[8]

Wissenschaftler der Universität Leeds um Ian D. Couzin und Jens Krause fanden heraus, dass ein strukturelles Gedächtnis in Fisch- und Vogelschwärmen dafür sorgt, dass auf eine spezielle Schwarmformation häufig eine ganz bestimmte nächste folgt.[9] So ordnen sie sich zunächst in einen ungeordnet chaotischen Schwarm wie bei Mückenschwärmen und bilden als Nächstes einen Torus.

Computermodelle für Schwarmverhalten von V-Formationen waren lange Zeit daran gescheitert, die Entstehung solcher Formationen zufällig angeordneter, vom Boden auffliegender Tiere zu berechnen. Valmir Barbosa und Andre Nathan (Universidade Federal do Rio de Janeiro) berichteten 2007, das Problem gelöst zu haben[6], und zwar durch die Kombination von nur zwei Vorgaben für jedes Tier:

  1. Nutze den Auftrieb, den der Flügelschlag eines vor dir fliegenden Vogels verursacht.
  2. Nimm dabei eine Position ein, von der aus du ungestört nach vorn blicken kannst.

Diese Modellrechnungen gingen von Schwärmen mit bis zu 35 Tieren aus, und unabhängig von der ursprünglichen Anordnung dieser Tiere entstand schließlich immer eine ordentliche Formation.

Anwendung im Militär

Die US Air Force begann im Jahre 1998 mit der Erforschung eines autonomen Drohnensystems, genannt LOCAAS (Low Cost Autonomous Attack System)[10]. Dieses Drohnensystem nutzt einen Algorithmus, der auf dem Modell von Craig Reynolds basiert, um als Schwarm fliegen zu können. Sobald bis zu 192 Drohnen von einem Tarnkappenbomber abgeworfen werden, beginnen sie sich elektronisch untereinander zu verständigen und greifen feindliche Truppen im Schwarm an.[11]

Siehe auch

Literatur

  • Gabriele Brandstetter, Bettina Brandl-Risi u. Kai van Eikels (Hrsg.): Schwarm(E)Motion. Bewegung zwischen Affekt und Masse. Rombach, Freiburg 2008 ISBN 3-7930-9500-2
  • Eva Horn, Lucas Marco Gisi (Hrsg.): Schwärme – Kollektive ohne Zentrum. Eine Wissensgeschichte zwischen Leben und Information. Bielefeld: transcript 2009. ISBN 978-3-8376-1133-5

Weblinks

Belege

  1. a b
  2. Sandro Mattioli: Die unbekannten Flugobjekte. Wie Schwärme sich selbst organisieren. Bild der Wissenschaft, Ausgabe 3/2009, S. 16
  3. a b A. Nathan, V. C. Barbosa: V-like formations in flocks of artificial birds. In: Artificial life. Band 14, Nummer 2, 2008, S. 179–188, doi:10.1162/artl.2008.14.2.179, PMID 18331189. arxiv:cs/0611032v2.
  4. www.red3d.com Craig Reynolds’ Seite zu Boids-Links, Applets u. a. (englisch)
  5. Ein Modell zur Simulation der Bewegung von Schwärmen von Craig Reynolds
  6. Low Cost Autonomous Attack System - Global Security
  7. Ausführung über die Anwendung von natürlichem Schwarmverhalten im Militär (PDF; 1,0 MB)