Stichprobenvarianz (Schätzfunktion)
Formelzeichen | |
---|---|
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu} | Mittelwert der Grundgesamtheit |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma^2} | Varianz der Grundgesamtheit |
Anzahl der gegebenen Werte | |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1,\ldots, X_n} | Zufallsvariablen (Zufallsgrößen) |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1,\ldots, x_n} | Stichprobe: beobachtete Werte der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Zufallsvariablen |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline x} | Stichprobenmittel / empirischer Mittelwert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1,\ldots, x_n} |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s^2} | Stichprobenvarianz / empirische Varianz von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1,\ldots, x_n} |
Stichprobenmittel (als Funktion der Zufallsvariablen) | |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^2} | Stichprobenvarianz (als Funktion der Zufallsvariablen) |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(X)} | Erwartungswert: Mittelwert, der sich aus der Verteilungsfunktion von X ergibt |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(X)} | Varianz (Stochastik): Varianz, die sich aus der Verteilungsfunktion von X ergibt |
Die Stichprobenvarianz ist eine Schätzfunktion und messbare Abbildung in der mathematischen Statistik. Ihre zentrale Aufgabe ist es, die unbekannte Varianz einer zugrundeliegenden Wahrscheinlichkeitsverteilung zu schätzen. Außerhalb der Schätztheorie findet sie auch als Hilfsfunktion zur Konstruktion von Konfidenzbereichen und statistischen Tests Verwendung.
Die Stichprobenvarianz wird in mehreren Varianten definiert, die sich leicht bezüglich ihrer Eigenschaften und somit auch ihrer Anwendungsgebiete unterscheiden. Die Unterscheidung der unterschiedlichen Bezeichnungen für die Varianten ist in der Literatur nicht immer einheitlich. Wird daher lediglich von "der" Stichprobenvarianz gesprochen, so sollte immer überprüft werden, welche der Definitionen im entsprechenden Kontext gilt.
Stichprobenvarianz (Schätzfunktion) ist zu unterscheiden von der konkreten Berechnung der Varianz einer Stichprobe: Die empirische Varianz wird ebenfalls oft als Stichprobenvarianz bezeichnet, ist aber keine Funktion, sondern ein Streumaß von mehreren numerischen (Stichproben-)werten. Sie entspricht einem konkreten Schätzwert und ist damit eine Realisierung der Stichprobenvarianz als Schätzfunktion und Zufallsvariable.
Definition
Zur Schätzung des Erwartungswertes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu} und der Varianz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma^2} einer Grundgesamtheit liegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1, X_2, \dots , X_n } und sei . In der Anwendung sind die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_i } die Stichprobenvariablen. Es bezeichne
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline X = \frac 1n \sum_{i=1}^n X_i }
das Stichprobenmittel.
Zuerst ist der Erwartungswert zu schätzen, welcher hier in Form des Parameters Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=1} vorliegt. Mit Hilfe des Kleinste-Quadrate-Kriteriums[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum\nolimits_{i=1}^{n} (X_i-\mu)^2 \rightarrow \text{Min!}}
erhält man die Schätzung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat \mu} des Erwartungswertes als Stichprobenmittel:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat \mu = \overline X} .
Da durch die Schätzung des Stichprobenmittels ein Freiheitsgrad verbraucht wird, ist es üblich, die empirische Varianz mit dem Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{n-1}} zu „korrigieren“. In der Literatur finden sich im Wesentlichen drei unterschiedliche Definitionen der Stichprobenvarianz. Viele Autoren nennen
die Stichprobenvarianz[2][3][4] oder zur besseren Abgrenzung die korrigierte Stichprobenvarianz.[5] Alternativ wird auch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 }
als Stichprobenvarianz bezeichnet[6][3], ebenso wird auch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {S^*}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_0 )^2 }
für eine fixe reelle Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_0 } Stichprobenvarianz genannt.[7]
Verwendung
Wichtiger Verwendungszweck der Stichprobenvarianz ist die Schätzung der Varianz einer unbekannten Wahrscheinlichkeitsverteilung. Je nach Rahmenbedingungen kommen dabei die verschiedenen Definitionen zum Einsatz, da diese unterschiedliche Optimalitätskriterien erfüllen (siehe unten). Als Faustregel kann gelten:
- Sind der Erwartungswert und die Varianz des Wahrscheinlichkeitsmaßes unbekannt, so wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^2 } als Schätzfunktion verwendet.
- Ist die Varianz unbekannt und entspricht der Erwartungswert dem Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_0 } , so wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {S^*}^2 } als Schätzfunktion verwendet.
Die Schätzfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{S}^2 } wird meist nicht verwendet, sie entsteht beispielsweise bei Verwendung der Momentenmethode oder der Maximum-Likelihood-Methode und erfüllt die gängigen Qualitätskriterien nicht.
Neben der Verwendung als Schätzfunktion wird die Stichprobenvarianz noch als Hilfsfunktion für die Konstruktion von Konfidenzintervallen oder statistischen Tests verwendet. Dort findet sie sich zum Beispiel als Pivotstatistik zur Konstruktion von Konfidenzintervallen im Normalverteilungsmodell oder als Teststatistik bei dem Chi-Quadrat-Test.
Eigenschaften
Rahmenbedingungen
Meist wird die Stichprobenvarianz unter den Annahmen verwendet, dass die Auswertungen unabhängig und identisch verteilt sind sowie entweder einen bekannten oder einen unbekannten Erwartungswert besitzen. Diese Annahmen werden durch die folgenden statistischen Modelle beschrieben:
- Ist der Erwartungswert unbekannt, so ist das statistische Modell gegeben durch das (nicht notwendigerweise parametrische) Produktmodell
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\R^n, \mathcal B(\R^n), (P_\vartheta^{\otimes n})_{\vartheta \in \Theta} )} .
- Hierbei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P^{\otimes n} } das n-fache Produktmaß von und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (P_\vartheta)_{\vartheta \in \Theta} } ist die Familie aller Wahrscheinlichkeitsmaße mit endlicher Varianz, die mit einer beliebigen Indexmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Theta } indiziert sind. Die Stichprobenvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1, \dots, X_n } sind dann unabhängig identisch verteilt gemäß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_\vartheta } und besitzen also eine endliche Varianz.
- Ist der Erwartungswert bekannt und gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_0 } , so ist das statistische Modell gegeben durch das (nicht notwendigerweise parametrische) Produktmodell
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\R^n, \mathcal B(\R^n), (P_\vartheta^{\otimes n})_{\vartheta \in \Theta} )} .
- Hierbei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (P_\vartheta)_{\vartheta \in \Theta} } die Familie aller Wahrscheinlichkeitsmaße mit endlicher Varianz und Erwartungswert , die mit einer beliebigen Indexmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Theta } indiziert sind. Die Stichprobenvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1, \dots, X_n } sind dann unabhängig identisch verteilt gemäß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_\vartheta } und besitzen somit eine endliche Varianz und den Erwartungswert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_0 } .
Erwartungstreue
Bekannter Erwartungswert
Im Falle des bekannten Erwartungswertes ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {S^*}^2 } ein erwartungstreuer Schätzer für die Varianz. Das bedeutet, es gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E_\vartheta({S^*}^2) = \operatorname{Var}_\vartheta(X_1)=\operatorname{Var}(P_\vartheta) } .
Hierbei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E_\vartheta(Y) } bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}_\vartheta(Y) } die Erwartungswertbildung bzw. die Varianzbildung bezüglich des Wahrscheinlichkeitsmaßes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_\vartheta } .
Die Erwartungstreue gilt, da
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E_\vartheta\left( {S^*}^2 \right)= \frac 1n \sum_{i=1}^n \operatorname E_\vartheta\left( (X_i-\mu_0 )^2 \right) = \frac 1n \sum_{i=1}^n \operatorname{Var}(X_i) = \operatorname{Var}_\vartheta(X_1) }
ist. Hierbei folgt der erste Schritt aus der Linearität des Erwartungswertes, der zweite, da nach Voraussetzung über den bekannten Erwartungswert ist und somit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E_\vartheta(X_i - \mu_0)^2= \operatorname E_\vartheta(X_i - \operatorname E(X_i))^2= \operatorname{Var}_\vartheta (X_i) } gilt nach Definition der Varianz. In den dritten Schritt geht ein, dass die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_i } alle identisch verteilt sind.
Unbekannter Erwartungswert
Im Falle des unbekannten Erwartungswertes ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^2 } eine erwartungstreue Schätzfunktion für die Varianz, es gilt also
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E_\vartheta(S^2)= \operatorname{Var}(P_\vartheta) }
Im Gegensatz dazu ist nicht erwartungstreu, denn es gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E_\vartheta(\tilde{S}^2)= \frac{n-1}{n}\operatorname{Var}(P_\vartheta) } .
Der Schätzer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{S}^2 } ist aber noch asymptotisch erwartungstreu. Dies folgt direkt aus der obigen Darstellung, denn es ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} \operatorname{E}_\vartheta(\tilde{S}^2)= \lim_{n \to \infty} \frac{n-1}{n}\operatorname{Var}(P_\vartheta)=\operatorname{Var}(P_\vartheta) } .
- Herleitung der Erwartungstreue
Beachte dazu zuerst, dass aufgrund der Unabhängigkeit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E (X_i X_j) = \begin{cases} \operatorname E (X_i) \cdot \operatorname E ( X_j) & \text{ falls } i \neq j \\ \operatorname E (X_i^2) & \text{ falls } i=j \end{cases} \quad (*)}
gilt und aufgrund der identischen Verteilungen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E (X_i) = \operatorname E (X_j) } für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i,j } und somit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E (X_i) \cdot \operatorname E ( X_j)= \operatorname E (X_i) ^2 \quad (**)} .
Daraus folgt direkt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \operatorname E_\vartheta \left( X_k \overline X \right)&= \frac 1n \operatorname E_\vartheta \left( X_k \cdot \sum_{i=1}^n X_i \right) \\ &= \frac 1n \operatorname E_\vartheta \left( X_k^2 \right)+ \frac 1n \operatorname E_\vartheta \left( \sum_{i=1 \atop i \neq k}^n X_i X_k \right) \\ &= \frac 1n \operatorname E_\vartheta \left( X_k^2 \right) + \frac {n-1}{n} \operatorname E_\vartheta \left( X_k \right)^2 \quad (1) \end{align}}
aufgrund von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (*) } und im letzten Schritt und unter Verwendung der Linearität des Erwartungswertes.
Analog folgt, weil auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1^2,\ldots,X_n^2} identisch verteilt sind (insbesondere also für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i,k} ),
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \operatorname E_\vartheta \left( \overline X ^2\right)&= \frac {1}{n^2} \operatorname E_\vartheta \left( \sum_{i=1}^n \sum_{j=1}^n X_iX_j\right) \\ &= \frac {1}{n^2} \operatorname E_\vartheta \left(\sum_{i=1}^n X_i^2+ \sum_{i,j=1 \atop i \neq j}^n X_iX_j\right)\\ &= \frac {n}{n^2} \cdot \operatorname E_\vartheta (X_k^2)+ \frac{n(n-1)}{n^2} \operatorname E_\vartheta (X_k)^2\\ &= \frac 1n \operatorname E_\vartheta (X_k^2) + \frac{n-1}{n} \cdot \operatorname E_\vartheta (X_k)^2 \quad (2) \end{align}}
wieder mithilfe von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (*) } und im dritten Schritt.
Mithilfe von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1) } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2) } im zweiten Schritt sowie von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (**) } im dritten Schritt ist dann
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \operatorname E_\vartheta \left( \sum_{k=1}^n (X_k- \overline X)^2 \right)&= \operatorname E_\vartheta \left( \sum_{k=1}^n (X_k^2- 2\overline X \cdot X_k + \overline X^2) \right) \\ &= \sum_{k=1}^n \left( \operatorname E_\vartheta (X_k^2) -2 \left( \underbrace{\frac 1n \operatorname E_\vartheta \left( X_k^2 \right) + \frac {n-1}{n} \operatorname E_\vartheta \left( X_k \right)^2 }_{(1)}\right) + \left( \underbrace{\frac 1n \operatorname E_\vartheta (X_k^2) + \frac{(n-1)}{n} \cdot \operatorname E_\vartheta (X_k)^2}_{(2)}\right) \right)\\ &= n \cdot \operatorname E_\vartheta (X_1^2) -2 \operatorname E_\vartheta \left( X_1^2 \right) -2 (n-1) \operatorname E_\vartheta \left( X_1 \right)^2 + \operatorname E_\vartheta (X_1^2) + (n-1) \cdot \operatorname E_\vartheta (X_1)^2 \\ & = (n-1) \cdot \operatorname E_\vartheta (X_1^2)- (n-1) \operatorname E_\vartheta (X_1)^2 \\ & = (n-1) \operatorname{Var}(X_1)\end{align}.}
Die letzte Gleichheit folgt hier nach dem Verschiebungssatz. Daraus folgt dann
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E_\vartheta (S^2)= \frac{1}{n-1} \operatorname E_\vartheta \left( \sum_{k=1}^n (X_k- \overline X)^2 \right)= \operatorname{Var}_\vartheta(X_1)= \operatorname{Var}(P_\vartheta) }
und analog
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E_\vartheta (\tilde{S}^2)= \frac{1}{n} \operatorname E_\vartheta \left( \sum_{k=1}^n (X_k- \overline X)^2 \right)= \frac{n-1}{n} \operatorname{Var}(P_\vartheta) } .
Bessel-Korrektur
Direkt aus der Definition folgt der Zusammenhang
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^2 = \frac{n}{n-1} \tilde{S}^2 }
Der Faktor wird hierbei als Bessel-Korrektur (nach Friedrich Wilhelm Bessel) bezeichnet.[8] Er kann insofern als Korrekturfaktor verstanden werden, da er Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{S}^2 } so korrigiert, dass die Schätzfunktion erwartungstreu wird. Dies folgt, da wie oben gezeigt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E_\vartheta(\tilde{S}^2)= \frac{n-1}{n}\operatorname{Var}(P_\vartheta) } .
und die Bessel-Korrektur genau der Kehrwert des Faktors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{n-1}{n} } ist. Die Schätzfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^2 } geht somit aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{S}^2 } durch die Bessel-Korrektur hervor.
Stichprobenstandardabweichung
Sind die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_i} unabhängig und identisch verteilt, also beispielsweise eine Stichprobe, so ergibt sich die Standardabweichung der Grundgesamtheit der Stichprobe als Wurzel aus der Stichprobenvarianz bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^2 } , also
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{\tilde{S}^2}= \sqrt{ \frac{1}{n} \sum_{i=1}^n (X_i-\overline X )^2}}
oder
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{S^2}= \sqrt{\frac{n}{n-1}} \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i-\overline X )^2}}
mit
wird Stichprobenstandardabweichung oder Stichprobenstreuung genannt[9], ihre Realisierungen entsprechen der empirischen Standardabweichung. Da die Erwartungstreue bei Anwendung einer nichtlinearen Funktion wie der Wurzel in den meisten Fällen verloren geht, ist die Stichprobenstandardabweichung im Gegensatz zur korrigierten Stichprobenvarianz in keinem der beiden Fälle ein erwartungstreuer Schätzer für die Standardabweichung.
Schätzung der Standardabweichung der Grundgesamtheit aus einer Stichprobe
Die korrigierte Stichprobenvarianz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^2} ist ein erwartungstreuer Schätzer für die Varianz Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \sigma _{X}^{2}} der Grundgesamtheit. Im Gegensatz dazu ist aber Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{S^2}} kein erwartungstreuer Schätzer für die Standardabweichung. Da die Quadratwurzel eine konkave Funktion ist, folgt aus der Jensenschen Ungleichung zusammen mit der Erwartungstreue von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^2}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}\left(\sqrt{S^2}\right) \leq \sqrt{\operatorname{E}\left(S^2 \right)} = \sigma_X} .
Dieser Schätzer unterschätzt also in den meisten Fällen die Standardabweichung der Grundgesamtheit.
Beispiel
Wählt man eine der Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -1} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle +1} durch Wurf einer fairen Münze, also beide mit Wahrscheinlichkeit jeweils Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac 12} , so ist das eine Zufallsgröße mit Erwartungswert 0, Varianz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma^2=1} und Standardabweichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma=1} . Berechnet man aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=2} unabhängigen Würfen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_2} die korrigierte Stichprobenvarianz
wobei
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar X=\frac{X_1+X_2}2}
den Stichprobenmittelwert bezeichnet, so gibt es vier mögliche Versuchsausgänge, die alle jeweils Wahrscheinlichkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1/4} haben:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_2} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{X}} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{S^2}} | |
---|---|---|---|---|
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -1} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -1} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -1} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} | |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -1} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle +1} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}} |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle +1} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -1} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt 2} | |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle +1} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle +1} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle +1} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} |
Der Erwartungswert der korrigierten Stichprobenvarianz beträgt daher
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}\left(S^2\right) = \frac{0+2+2+0}4 = 1 = \sigma^2} .
Die korrigierte Stichprobenvarianz ist demnach also tatsächlich erwartungstreu. Der Erwartungswert der korrigierten Stichprobenstandardabweichung beträgt hingegen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(\sqrt{S^2})= \frac{0 + \sqrt 2 + \sqrt 2 + 0}4 = \frac{\sqrt 2}2 < 1 = \sigma} .
Die korrigierte Stichprobenstandardabweichung unterschätzt also die Standardabweichung der Grundgesamtheit.
Berechnung für auflaufende Messwerte
In Systemen, die kontinuierlich große Mengen an Messwerten erfassen, ist es oft unpraktisch, alle Messwerte zwischenzuspeichern, um die Standardabweichung zu berechnen.
In diesem Zusammenhang ist es günstiger, eine modifizierte Formel zu verwenden, die den kritischen Term Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum_{i=1}^n{(X_i-\bar{X})^2}} umgeht. Dieser kann nicht für jeden Messwert sofort berechnet werden, da der Mittelwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{X}} nicht konstant ist.
Durch Anwendung des Verschiebungssatzes und der Definition des Mittelwerts Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \bar{X} = \frac{1}{n}\sum_{i=1}^n{X_i}} gelangt man zur Darstellung
bzw.
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\begin{aligned}{\sqrt {S^{2}}}&={}{\sqrt {{\frac {1}{n}}\left[\left(\sum _{i=1}^{n}X_{i}^{2}\right)-{\frac {1}{n}}\left(\sum _{i=1}^{n}X_{i}\right)^{2}\right]}}\end{aligned}}}
die sich für jeden eintreffenden Messwert sofort aktualisieren lässt, wenn die Summe der Messwerte Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \textstyle \sum _{i=1}^{n}{X_{i}}} sowie die Summe ihrer Quadrate Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum_{i=1}^n{X_i^2}} mitgeführt und fortlaufend aktualisiert werden. Diese Darstellung ist allerdings numerisch weniger stabil, insbesondere kann der Term unter der Quadratwurzel numerisch durch Rundungsfehler kleiner als 0 werden.
Durch geschicktes Umstellen lässt sich für letztere Gleichung eine Form finden, die numerisch stabiler ist und auf die Varianz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_{n-1}^2} und den Mittelwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{X}_{n-1}} des vorhergehenden sowie auf den Stichprobenwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_n} und den Mittelwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{X}_n} des aktuellen Iterationsschrittes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} zurückgreift:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} S^2 & = {} \frac{n-1}{n} \left(S_{n-1}^2 + \bar{X}_{n-1}^2 \right) + \frac{X_n^2}{n}-\bar{X}_n^2 \end{align}}
Normalverteilte Zufallsgrößen
Berechnungsgrundlagen
Für den Fall normalverteilter Zufallsgrößen lässt sich allerdings ein erwartungstreuer Schätzer angeben:[10]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{\frac{n-1}{2}} \ \frac{\Gamma\left(\frac{n-1}{2}\right)} {\Gamma\left(\frac{n}{2}\right)} \sqrt{S^2} }
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{S^2}} die Schätzung der Standardabweichung und die Gammafunktion. Die Formel folgt, indem man beachtet, dass eine Chi-Quadrat-Verteilung mit Freiheitsgraden hat.
Stichprobenumfang | Korrekturfaktor |
---|---|
2 | 1,253314 |
5 | 1,063846 |
10 | 1,028109 |
15 | 1,018002 |
25 | 1,010468 |
Beispiel
Es wurden bei einer Stichprobe aus einer normalverteilten Zufallsgröße die fünf Werte 3, 4, 5, 6, 7 gemessen. Man soll nun die Schätzung für die Standardabweichung errechnen.
Die Stichprobenvarianz ist:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s_X^2=\tfrac 14(2^2+1^2+0+1^2+2^2)=2{,}5}
Der Korrekturfaktor ist in diesem Fall
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2} \ \frac{\Gamma\left(2\right)}{\Gamma\left(2{,}5\right)} \approx 1{,}063846 }
und die erwartungstreue Schätzung für die Standardabweichung ist damit näherungsweise
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat{\sigma} =1{,}064 \sqrt{2{,}5}=1{,}68}
Literatur
- Claudia Czado, Thorsten Schmidt: Mathematische Statistik. Springer-Verlag, Berlin Heidelberg 2011, ISBN 978-3-642-17260-1, doi:10.1007/978-3-642-17261-8.
- Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, doi:10.1515/9783110215274.
- M.S. Nikulin: Sample variance. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online).
- Eric W. Weisstein: Sample Variance. In: MathWorld (englisch).
- Ludger Rüschendorf: Mathematische Statistik. Springer Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-41996-6, doi:10.1007/978-3-642-41997-3.
Einzelnachweise
- ↑ L. Fahrmeir, R. Künstler, I. Pigeot, G. Tutz: Statistik. Der Weg zur Datenanalyse. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/ Heidelberg 2016, ISBN 978-3-662-50371-3, S. 351.
- ↑ Claudia Czado, Thorsten Schmidt: Mathematische Statistik. Springer-Verlag, Berlin Heidelberg 2011, ISBN 978-3-642-17260-1, S. 5, doi:10.1007/978-3-642-17261-8.
- ↑ a b Eric W. Weisstein: Sample Variance. In: MathWorld (englisch).
- ↑ Ludger Rüschendorf: Mathematische Statistik. Springer Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-41996-6, S. 3, doi:10.1007/978-3-642-41997-3.
- ↑ Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 208, doi:10.1515/9783110215274.
- ↑ Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 207, doi:10.1515/9783110215274.
- ↑ M.S. Nikulin: Sample variance. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online).
- ↑ Eric W. Weisstein: Bessels Correction. In: MathWorld (englisch).
- ↑ Ludger Rüschendorf: Mathematische Statistik. Springer Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-41996-6, S. 27, doi:10.1007/978-3-642-41997-3.
- ↑ Eric Weisstein: Standard Deviation Distribution. In: MathWorld (englisch).