Tetrakishexaeder
aus Wikipedia, der freien Enzyklopädie
Das Tetrakishexaeder (aus griechisch τετράκις tetrakis „viermal“ und Hexaeder „Sechsflächner“), auch Pyramidenwürfel oder Disdyakishexaeder (griechisch δίς dis „zweimal“ und
δυάκις
„zweimal“), ist ein konvexes Polyeder, das sich aus 24 gleichschenkligen Dreiecken zusammensetzt und zu den Catalanischen Körpern zählt. Es ist dual zum Oktaederstumpf und hat 14 Ecken sowie 36 Kanten.
Entstehung
Werden auf die 6 Begrenzungsflächen eines Würfels (Kantenlänge ) quadratische Pyramiden mit der Flankenlänge aufgesetzt, entsteht ein Tetrakishexaeder, sofern die Bedingung erfüllt ist.
- Für den zuvor genannten minimalen Wert von haben die aufgesetzten Pyramiden die Höhe 0, sodass lediglich der Würfel mit der Kantenlänge übrig bleibt.
- Das spezielle Tetrakishexaeder mit gleichen Flächenwinkeln entsteht, wenn ist.
- Nimmt den o. g. maximalen Wert an, entartet das Tetrakishexaeder zu einem Rhombendodekaeder mit der Kantenlänge .
- Überschreitet den maximalen Wert, so ist das Polyeder nicht mehr konvex und entartet zu einem Sternkörper.
Formeln
Allgemein
|
Speziell
|
Anwendung
- In der Natur kommt das Tetrakishexaeder als spezielle Form {hk0} bei Kristallen der Klassen 432, 42m und m3m vor, z. B. beim Fluorit.
- Das Tetrakishexaeder wird auch als Spielwürfel (W24) verwendet.
Weblinks
Commons: Tetrakishexaeder – Sammlung von Bildern, Videos und Audiodateien
- Eric W. Weisstein: Tetrakishexaeder. In: MathWorld (englisch).
- Interaktive Darstellung des Tetrakishexaeders im Mineralienatlas
- Fluorit im Wölsendorfer Flußspat-Revier (Memento vom 20. Februar 2013 im Internet Archive)