Varianzreduktion
Varianzreduktion ist der Oberbegriff für verschiedene Techniken zur Effizienzsteigerung bei Monte-Carlo-Simulationen. Diese wurden zuerst 1955 durch Herman Kahn beschrieben.[1] Wichtige Varianzreduktionstechniken sind:
- Antithetische Variate (antithetic sampling)
- Kontrollvariate (control variates)
- Gewichtete Stichproben (importance sampling)
- Geschichtete Stichproben (stratified sampling)
Grundidee
Das Standardvorgehen bei Monte-Carlo-Simulationen besteht darin, eine gesuchte Größe , wie etwa ein Integral, eine komplizierte Summe oder einen unbekannten Parameter einer Wahrscheinlichkeitsverteilung, durch einen Erwartungswert auszudrücken, beispielsweise in der Form
mit einer geeigneten reellwertigen Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} und einer Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} , für die leicht eine große Anzahl von Realisierungen algorithmisch generiert werden kann, im Allgemeinen mithilfe von Pseudozufallszahlen.
Ist nun Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1, \dotsc, X_n} eine solche Stichprobe von unabhängigen Zufallsvariablen, die alle die gleiche Verteilung wie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} besitzen, so lässt sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} für große Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} annähern durch das arithmetische Mittel
- ,
denn wegen der Linearität des Erwartungswerts gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(S_n) = s} und nach dem starken Gesetz der großen Zahlen konvergieren die Näherungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_n} fast sicher gegen den gesuchten Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} .
Die Genauigkeit dieser Schätzung lässt sich mithilfe der Varianz von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_n} messen. Nach der Gleichung von Bienaymé gilt wegen der Unabhängigkeit der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_i} (und damit auch der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(X_i)} )
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(S_n) = \frac{1}{n}\operatorname{Var}(f(X))} .
Die Proportionalität der Varianz zum Kehrwert der Stichprobengröße , und damit die Konvergenzordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{O}\left(\tfrac{1}{\sqrt{n}}\right)} der Standardabweichung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_n} , lässt sich im Allgemeinen nicht weiter verbessern. Aus diesem Grund setzen Verfahren zur Varianzreduktion beim Proportionalitätsfaktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(f(X))} selbst an, indem sie für konkrete Fälle Möglichkeiten angeben, die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} und die Verteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} so zu wählen, dass dieser möglichst klein wird.
Bei realistischen Anwendungen kann im Allgemeinen die Varianz von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(X)} nicht exakt berechnet werden, da dann ja nicht einmal der Erwartungswert dieser Zufallsvariable bekannt ist. In diesem Fall kann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(f(X))} mit Hilfe der Stichprobenvarianz
geschätzt werden.
Literatur
- Thomas Müller-Gronbach, Erich Novak, Klaus Ritter: Monte Carlo-Algorithmen. Springer, 2012, ISBN 978-3-540-89140-6.
Einzelnachweise
- ↑ Herman Kahn, Use of different Monte Carlo Sampling Techniques, https://www.rand.org/content/dam/rand/pubs/papers/2008/P766.pdf