Iodazid

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 26. Mai 2021 um 14:20 Uhr durch imported>WikispiderBot(3723631) (⚙️ Bot: Quelltextbereinigung, prüfe und aktualisiere Vorlagen-Einbindungen).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Strukturformel
Struktur von Iodazid
Allgemeines
Name Iodazid
Summenformel IN3
Kurzbeschreibung

farbloser, hochexplosiver Feststoff[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer 14696-82-3
PubChem 61763
ChemSpider 55652
Eigenschaften
Molare Masse 168,92 g·mol−1
Aggregatzustand

fest

Dampfdruck

2 Torr (25 °C)[2]

Löslichkeit

Zersetzung in Wasser[3]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung
keine Einstufung verfügbar[4]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Iodazid, IN3, ist eine farblose bis gelbe, äußerst explosive, feste chemische Verbindung aus der Gruppe der Stickstoffhalogenide. Formal gehört es zu den Inter-Pseudohalogenen. Iodazid ist nicht zu verwechseln mit dem ebenfalls explosiven Iodstickstoff, NI3.

Gewinnung und Darstellung

Iodazid kann durch Reaktion von Silberazid AgN3 mit Iod in einer CFCl3-Lösung gewonnen werden.

Da sich Silberazid nur feucht gefahrlos handhaben lässt, Spuren von Wasser aber bereits die Zersetzung des Iodazids bewirken, gelingt dessen Herstellung am besten, wenn vor der Umsetzung mit Iod zur Suspension des Silberazids in Dichlormethan ein Trocknungsmittel gegeben wird. Auf diese Weise erhält man eine reine Lösung von Iodazid, aus der sich beim vorsichtigen Verdampfen des Lösungsmittels nadelförmige, goldglänzende Kristalle isolieren lassen.[3]

Zum ersten Mal wurde Iodazid um das Jahr 1900 in sehr unbeständigen etherischen Lösungen und in Form von mit Iod verunreinigten Kristallen durch Reaktion von Iod mit Silberazid erhalten.[5]

Eigenschaften

Iodazid liegt in Form eines eindimensionalen Polymers vor.[6] Hierbei werden zwei polymorphe Formen gebildet, die beide ein orthorhombisches Kristallgitter mit der Raumgruppe Pbam (Raumgruppen-Nr. 55)Vorlage:Raumgruppe/55 bilden.[6] Die große Reaktionsfähigkeit von Iodazid bei relativ hoher Stabilität beruht auf der Polarität der I–N-Bindung. Die durch Substitution mit Iodazid eingeführte N3-Gruppe kann wegen ihres hohen Energieinhalts Folgereaktionen eingehen.[3]

Die isolierte Verbindung ist stark schlag- und reibempfindlich.[5][7] Zur Charakterisierung der Explosionsfähigkeit wurden die folgenden Kenngrößen ermittelt:[2]

Normalgasvolumen 265 l·kg−1[2]
Explosionswärme 2091 kJ·kg−1[2]
Bleiblockausbauchung 14,0 cm3·g−1[2]

Diese liegen signifikant niedriger im Vergleich zu klassischen Explosivstoffen wie TNT oder Hexogen aber auch zu Acetonperoxid. Ein Umgang mit der Verbindung in verdünnter Lösung wird als sicher angesehen.[8]

Verwendung

Trotz seiner hohen Brisanz hat Iodazid einige praktische Anwendungen, beispielsweise kann es in der chemischen Synthese benutzt werden, um Aldehyde in Carbonsäureazide zu überführen.[9]

Literatur

Weblinks

Einzelnachweise

  1. Eintrag zu Iodazid. In: Römpp Online. Georg Thieme Verlag, abgerufen am 15. Juli 2014.
  2. a b c d e Buzek, P.; Klapötke, T.M.; Von Ragué Schleyer, P.; Tornieporth-Oetting, I.C.; White, P.S.: Iodazid in Angew. Chem. 105 (1993) 289–290, doi:10.1002/ange.19931050228
  3. a b c Kurt Dehnicke: Die Chemie des Iodazids, Angewandte Chemie, 91(7), 1979, 527–534, doi:10.1002/ange.19790910704.
  4. Dieser Stoff wurde in Bezug auf seine Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  5. a b A. Hantzsch, M. Schumann: Berichte der Deutschen Chemischen Gesellschaft, 33, 522, 1900.
  6. a b Lyhs, B.; Bläser, D.; Wölper, C.; Schulz, S.; Jansen, G.: Festkörperstrukturvergleich der Halogenazide XN3 (X=Cl, Br, I) in Angew. Chem. 124 (2012) 13031–13035, doi:10.1002/ange.201206028.
  7. Urben, P.G.: Bretherick's Handbook of Reactive Chemical Hazards, 6th Ed., Vol. 1, Butterworth-Heinemann 1999, ISBN 0-7506-3605-X, S. 1713.
  8. Dehnicke, K., Angew. Chem. (Intern. Ed.), 1976, 15, 553.
  9. L. Marinescu, J. Thinggaard, B. Thomsen, M. Bols, J. Org. Chem., (2003) 68, 9453–9455