Balmer-Serie

aus Wikipedia, der freien Enzyklopädie

Als Balmer-Serie wird eine bestimmte Folge von Emissions-Spektrallinien im sichtbaren elektromagnetischen Spektrum des Wasserstoffatoms bezeichnet, deren unteres Energieniveau in der L-Schale liegt. Sie wird beim Übergang eines Elektrons von einem höheren zum zweittiefsten Energieniveau emittiert.

Weitere Serien sind die Lyman-, Paschen-, Brackett-, Pfund- und die Humphreys-Serie.

Spektrum

Sichtbarer Bereich des Wasserstoff-Spektrums. Sichtbar sind sechs Linien der Balmer-Serie, da die CCD-Sensoren der Kamera auch ein wenig in den ultravioletten Teil des Spektrums hinein empfindlich sind.

Die Spektrallinien der Balmer-Serie sind nach dem Schweizer Physiker Johann Jakob Balmer benannt, der 1885 ihre mathematische Gesetzmäßigkeit, die Balmer-Formel, erkannte.

Entdeckung

Im sichtbaren Bereich des Wasserstoffatom-Spektrums lassen sich vier Linien beobachten, deren Abstände voneinander mit abnehmender Wellenlänge kleiner werden. Sie werden, beginnend mit der größten Wellenlänge, als Hα (H-alpha), Hβ, Hγ und Hδ bezeichnet. Ihre Wellenlängen lassen sich mit der Balmer-Formel berechnen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda = A \left( \frac{n^2}{n^2 - 4} \right) = A \left( \frac{n^2}{n^2 - 2^2} \right) }

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} ist dabei eine empirische Konstante (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = 364{,}50682 \, \mathrm{nm} = 3645{,}0682 \cdot 10^{-10} \mathrm{m}} , also eine Wellenlänge im Ultravioletten). Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} sind die ganzen Zahlen 3, 4, 5 und 6 einzusetzen (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \geq 2+1} ); Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} ist die fortlaufende Nummer der Schale, die Hauptquantenzahl, des betreffenden angeregten Zustands.

In dem für das menschliche Auge nicht sichtbaren ultravioletten Bereich des Spektrums wurden weitere Linien entdeckt, die fortlaufend mit Hε, Hζ usw. bezeichnet werden und deren Wellenlängen sich für ganzzahlige oberhalb 6 ebenfalls sehr gut berechnen lassen:

Linien im Wasserstoffspektrum[1]
Übergang von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} 3 → 2 4 → 2 5 → 2 6 → 2 7 → 2 8 → 2 9 → 2 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \infty}  → 2
Name der Linie
Wellenlänge in nm gemessen 656,2793 486,1327 434,0466 410,1738 397,0075 388,8052 383,5387
Wellenlänge in nm berechnet 656,278 486,132 434,045 410,1735 397,0074 388,8057 383,5397 (364,56)
Farbe Rot Blau-Grün Violett Violett Violett Violett Ultraviolett Ultraviolett
Sichtbarkeit (für das menschliche Auge) sichtbar nicht sichtbar

Die Folge konvergiert also für wachsende Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} von oben gegen die Wellenlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} .

Verallgemeinerung durch Rydberg

Stellt man die Balmer-Formel nach dem Kehrwert der Wellenlänge, der Wellenzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde\nu}

um, lässt die von Balmer gefundene Gleichung sich mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_\infty = \tfrac{4}{A}} auch in der Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde \nu = R_\infty \left( \frac{1}{2^2} - \frac{1}{n^2} \right) }

schreiben, in der

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_\infty = 1{,}097 373 156 8539(55)\cdot 10^{7}\,\mathrm{m^{-1}} }

die nach dem schwedischen Physiker Johannes Rydberg benannte Rydberg-Konstante ist und für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} beliebige natürliche Zahlen größer als 2 einzusetzen sind. Bereits drei Jahre nach Balmers Entdeckung verallgemeinerte daher Rydberg Balmers Formel im Jahre 1888 zu der ebenfalls nach ihm benannten Rydberg-Formel:

Bis zu diesem Zeitpunkt allerdings waren im Wasserstoffspektrum nur die sichtbaren Linien für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1 = 2} bekannt, womit Rydbergs Gleichung auch eine Vorhersage noch zu findender Linien war. Die Entdeckung der im ultravioletten Bereich liegenden Lyman-Serie für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1 = 1} durch den US-amerikanischen Physiker Theodore Lyman im Jahr 1906 sowie der im infraroten Bereich liegenden Paschen-Serie für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1 = 3} durch den deutschen Physiker Friedrich Paschen im Jahr 1908 bestätigten jedoch schon bald die Richtigkeit von Rydbergs Erweiterung.

Ritzsches Kombinationsprinzip

Die Gleichung von Rydberg beschreibt das Wasserstoffspektrum recht genau. Bei den meisten anderen Atomen liefert sie jedoch keine korrekten Ergebnisse. Einen Fortschritt in der Beschreibung der Atomspektren lieferte im Jahr 1908 der Schweizer Mathematiker Walter Ritz. Er entdeckte das nach ihm benannte Ritzsche Kombinationsprinzip:

Durch additive oder subtraktive Kombination, sei es der Serienformeln selbst, sei es der in sie eingehenden Konstanten, lassen sich andere Serienformeln bilden.

Vereinfacht ausgedrückt bedeutet dies, dass sich aus zwei bekannten Linien eine mögliche dritte Linie berechnen lässt. Jedoch lassen sich nicht alle dieser berechneten Linien beobachten. Welche Linien wirklich auftreten, konnte Ritz nicht erklären.

Deutung durch das Bohrsche Atommodell

Die bis zu diesem Zeitpunkt rein empirisch gefundenen Formeln ließen sich erstmals mit dem Bohrschen Atommodell verstehen. Danach sind die Spektrallinien auf den Übergang von Elektronen auf ein anderes Energieniveau zurückzuführen. Mit dem Modell von Bohr erhält man als allgemeine Gleichung für diese Übergänge:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde\nu = R_\infty \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad \text{mit} \quad n_2 \ge n_1 + 1 }

Das erste Glied in der Klammer, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{1}{n_1^2}} , ist der so genannte Grundterm, das zweite, , wird als Laufterm bezeichnet. Hält man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1} im Grundterm fest und variiert jeweils Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_2} im Laufterm, so ergeben sich die unten aufgeführten, nach ihren Entdeckern benannten Serien. Mit Ausnahme von Hα (rot), Hβ (blaugrün), Hγ, Hδ, Hε und Hζ (alle violett) liegen sie im ultravioletten bzw. infraroten Bereich des Frequenzspektrums.

Name n1 n2 Formel Spektralbereich/Farbe
Lyman-Serie 1 2, 3, 4, … Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde\nu = R _\infty\left( 1 - \frac{1}{n_2^2} \right) } Vakuum-UV (121 nm → 91 nm)
Balmer-Serie 2 3, 4, 5, … Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde\nu = R_\infty \left( \frac{1}{2^2} - \frac{1}{n_2^2} \right) } rot, blaugrün, 4× violett,
dann Übergang zum nahen UV → 365 nm
Paschen-Serie 3 4, 5, 6, … Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde\nu = R_\infty \left( \frac{1}{3^2} - \frac{1}{n_2^2} \right) } IR-A (1875 nm → 820 nm)
Brackett-Serie 4 5, 6, 7, … Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde\nu = R_\infty \left( \frac{1}{4^2} - \frac{1}{n_2^2} \right) } IR-B (4050 nm → 1460 nm)
Pfund-Serie 5 6, 7, 8, … IR-B (7457 nm → 2280 nm)

Bereits im Bohrschen Atommodell ist, im Gegensatz zur Balmerformel, die Konstante keine rein empirische Größe. Vielmehr lässt sich der Wert direkt auf in die Rechnung eingehende Naturkonstanten zurückführen. Auch die Einschränkung auf ganzzahlige Werte für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_2} sowie die Bedingung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_2 \ge n_1 + 1 }

folgen aus diesem Modell. Die Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_2} sind danach die Hauptquantenzahlen für jenen Grund- oder angeregten Zustand, auf denen das Elektron zurückfällt, bzw. den höherenergetischen, darüber hinaus angeregten Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_2} , von welchem es verfällt, d. h. ein Übergang zwischen Elektronen ist im Allgemeinen – wie bei der Balmer-Serie – auch zwischen zwei angeregten Zuständen möglich.

Die Abbildung oben rechts zeigt das Termschema des Wasserstoffatoms und visualisiert die obigen Gleichungen (in der Abbildung wird statt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1} die Bezeichnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} und statt die Bezeichnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} verwendet): auf der linken vertikalen Achse ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1} abgetragen. Auf der rechten vertikalen Achse ist die zugehörige Anregungsenergie, jeweils vom Grundzustand aus gemessen, in eV angegeben. Der Abstand der Energieniveaus ist maßstabsgerecht. In horizontaler Richtung sind für jede Serie exemplarisch die ersten Übergänge eingezeichnet. Die zugehörigen Hauptquantenzahlen des Zustandes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_2} sind darüber angegeben. Der Abstand der Linien zueinander, d. h. in horizontaler Richtung, ist nicht maßstabsgerecht, sondern aus Gründen der Übersichtlichkeit gleich groß gewählt. Die Abbildung verdeutlicht, dass alle Linien einer Serie auf dem gleichen Energieniveau enden. Die Hα-Linie der Balmer-Serie ist somit ein Übergang von  = 3 nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1}  = 2.

Ganz rechts in den Serien ist gepunktet die jeweilige Seriengrenze dargestellt, d. h.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_2 \longrightarrow \infty. }

Das Elektron ist dann nicht mehr an dem Atomkern gebunden, das Atom ist ionisiert. Für die Lyman-Serie erhält man mit der Bohrschen Gleichung eine Energie von 13,6 eV. Auch dieser Wert stimmt mit dem experimentell bestimmten Wert für die Ionisationsenergie des Wasserstoffatoms im Grundzustand gut überein.

Die Frage, welche der Linien, die nach dem Ritzschen Kombinationsprinzip möglich sind, auch tatsächlich auftreten, wird durch die Auswahlregeln geklärt. Diese ergeben sich aus quantenmechanischen Rechnungen.

Geschichte

Der Entdecker Balmer untersuchte das von Gasentladungen in Wasserstoff ausgehende Licht, weil er vermutete, dass zwischen der Lichtemission und dem Aufbau der Atome ein ursächlicher Zusammenhang besteht. Das emittierte Licht, mit einem Gitter spektral zerlegt, zeigt die vier diskreten Linien im sichtbaren Bereich (Linienspektrum). Balmer fand 1884 das Bildungsgesetz (siehe oben) mit der Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = 3645{,}6 \cdot 10^{-10} \mathrm{m}} .

Er hielt seine Entdeckung für einen Spezialfall einer noch unbekannten allgemeineren Gleichung, die auch für andere Elemente gültig sein könnte. Diese Vermutung wird durch spätere Untersuchungen von Spektren von Atomen oder Ionen mit nur einem Elektron in der äußersten Schale bestätigt. Ungeklärt blieb für Balmer jedoch die physikalische Bedeutung von .

Siehe auch

Literatur

Weblinks

Einzelnachweise

  1. Quelle: Helmut Vogel: Gerthsen Physik. Springer-Verlag: Berlin Heidelberg, 18. Auflage 1995, S. 623