Balkentheorie

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Biegebalken)

Die Balkentheorie beschreibt das Verhalten von Balken unter Belastung. Sie ist ein Teilgebiet der technischen Mechanik. Insbesondere wird mithilfe der Festigkeitslehre und der Elastizitätslehre die elastische Biegung eines Balkens untersucht, weshalb man auch von der Biegetheorie des Balkens spricht.

Sie wird in den Ingenieurwissenschaften Bauingenieurwesen und Maschinenbau entwickelt und angewendet.

Die Belastungsgrößen sind neben dem Biegemoment auch Längs- und Querkräfte sowie Torsionsmomente. Die Biegung ist zudem von der Geometrie des Balkens (Querschnitt, evtl. über Länge veränderlich) und seiner Lagerung sowie der Elastizität des Balken-Werkstoffs abhängig. Festigkeitswerte des Materials bestimmen den Übergang zu plastischer Biegung und Biegebruch.

Die Balkentheorie wurde im Laufe der Zeit schrittweise verfeinert. Der Biegevorgang wurde dabei immer besser modelliert, die Handhabung der Theorie aber aufwändiger. In den meisten Anwendungen werden mit der Klassischen Biegelehre[1] (Theorie I. Ordnung) ausreichend genaue Ergebnisse errechnet.

Grundzüge

Näherungsschritte

Allgemein unterscheidet man

Balkentheorie Erster Ordnung
Es wird am unverformten Balken ein Balkenelement betrachtet, Kräfte und Momente werden bilanziert. In den meisten Fällen stimmt das Ergebnis hinreichend mit der Wirklichkeit überein. (I. A., wenn die Knicklast unter 10 % der idealen Knickdrucklast ist.)
linearisierte Balkentheorie Zweiter Ordnung
Es wird am verformten Balken ein Balkenelement betrachtet; das mathematische Modell wird linearisiert. Sie wird für Stabilitätsprobleme benötigt, sowie für große Durchbiegungen bei Neigungswinkeln bis zu einem Rotationswinkel von betragsmäßig 0,1 rad.[2]
Balkentheorie Dritter Ordnung
Es wird am verformten Balken ein Balkenelement betrachtet; das mathematische Modell wird nicht linearisiert. Sie wird in Sonderfällen benötigt, bei sehr großen Durchbiegungen und Neigungswinkeln über ca. 20°.

In der Balkentheorie Zweiter Ordnung können je nach Literatur auch nichtlineare Terme berücksichtigt werden, deshalb ist die Grenze zwischen Theorie Zweiter und Theorie Dritter Ordnung fließend.

Klassische Annahmen: die Bernoullischen Annahmen

Inhalt der Bernoullischen Annahmen ist:

  1. Der Balken ist schlank: seine Länge ist wesentlich größer als seine Querschnittsabmessungen.
  2. Balkenquerschnitte, die vor der Deformation senkrecht auf der Balkenachse standen, stehen auch nach der Deformation senkrecht auf der deformierten Balkenachse.
  3. Querschnitte bleiben auch nach der Deformation in sich eben.
  4. Die Biegeverformungen sind klein im Vergleich zur Länge des Balkens (maximal in der Größe der Querschnittsabmessungen).
  5. Der Balken besteht aus isotropem Material und folgt dem Hooke'schen Gesetz.

Man spricht bei der (näherungsweisen) Erfüllung dieser Voraussetzungen auch von einem Euler-Bernoulli-Balken. Dabei handelt es sich aber um Modellannahmen, die bei realen Balken nur mehr oder weniger genau erfüllt sind. In der wirklichen Welt gibt es keinen Balken, der diesem Modell genau entspricht.

Die Annahmen 2. u. 3. treten i. A. nie bei belasteten Balken auf, jedoch wenn die Annahmen/Folgen 2. u. 3. in einer Näherung zulässig sind, liegt z. B. ein Balken vor, der unter dem Stichwort Timoschenko-Balken behandelt wird.

Bei ausschließlicher Belastung in Längsrichtung kann ein Stab in der Stabtheorie I. Ordnung zufolge eines Festigkeitskriteriums (zufolge Normalkraft und Biegung) versagen; in der Stabtheorie II. Ordnung ist dieses Festigkeitskriterium in der verformten Lage zu erfüllen; damit ermöglicht sie eine Aussage über ein eventuelles Stabilitätsversagen durch seitliches Ausknicken (Knickstab). Des Weiteren wird bei Bernoulli-Balken im Allgemeinen auch Versagen durch Querkraft ausgeschlossen.

Im Übrigen haben Balken oft über deren ganze Länge konstante Querschnittseigenschaften (konstanten Querschnitt, Elastizitätsmodul, …), da diese herstellungstechnisch, als auch rechnerisch einfacher zu handhaben sind.

Theorie Erster Ordnung: Statik

Die Klassische Theorie deckt sich im Wesentlichen mit der Theorie erster Ordnung, wobei mit Gleichgewichtsbedingungen an Querschnittsflächen des unverformten Balkens gearbeitet wird, deren Ebenbleiben von der Theorie vorausgesetzt wird.

Statische Bestimmtheit

Statisch bestimmt gelagerter Balken

Bei statisch bestimmt gelagerten Balken lassen sich die Auflagerkräfte und Schnittgrößen aus den Gleichgewichtsbedingungen bestimmen. Bei statisch überbestimmten[3][4][5] Balken sind zusätzlich zu den Gleichgewichtsbedingungen auch Verträglichkeitsbedingungen zu erfüllen, um die Auflagerkräfte und Schnittgrößen bestimmen zu können. Im einfachsten Fall wird ein Balken anhand der Gleichung der Biegelinie, einer linearen inhomogenen Differentialgleichung, berechnet. Sie stellt einen Zusammenhang zwischen der Durchbiegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w} (in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} -Richtung) und der Querbelastungen (Streckenlast Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q} , Einzellast quer zum Träger, Einzelmoment, …) als Funktion der Koordinate Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} entlang der Balkenachse her.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (EI(x)\,w''(x))'' = q(x)} .

Biegesteifigkeit

Die Biegesteifigkeit gibt an, wie groß das Biegemoment im Verhältnis zur Krümmung ist. Für homogene Querschnitte ergibt sie sich als Produkt Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle EI} aus dem Elastizitätsmodul des Materials und dem geometrischen Flächenträgheitsmoment des gegebenen Querschnitts. Letzteres berechnet sich als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_y=\int z^2 {\rm d}A=\iint z^2 {\rm d}y\,{\rm d}z\quad} wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} die orthogonalen Koordinaten vom Schwerpunkt weg gemessen sind.

Für einen Balken mit rechteckigem Querschnitt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b \cdot h} (in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} - respektive Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} -Richtung) ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_y(x)=\int_{-h(x)/2}^{h(x)/2}\int_{-b(x)/2}^{b(x)/2} z^2 {\rm d}y\,{\rm d}z={\left(h(x)\right)^3\cdot b(x)\over 12}} .

Rand- und Übergangsbedingungen ergeben sich aus der Art der Auflager und bestehen aus kinematischen Randbedingungen und aus dynamischen (Kräfte und Momente betreffenden) Randbedingungen.

Für die dynamischen Randbedingungen ist relevant, welcher Zusammenhang zwischen der Durchbiegung und den Schnittlasten besteht, nämlich

Biegemoment:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M(x) = -EI(x)\,w''(x) }

Querkraft:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q(x) = -(EI(x)\,w''(x))' }

Biegespannung

Das Biegemoment setzt sich aus Biegespannungen zusammen, dies sind in axialer Richtung wirkende Spannungen mit einer über den Stab veränderlichen Verteilung von Normalspannungen:

Im einfachsten Fall geht man in der Balkentheorie von der Bernoullitheorie aus, welche Ebenbleiben der Querschnitte voraussetzt, in Kombination mit einem linear elastischen Materialverhalten. Diese Vereinfachung führt zu der Formel:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_B(x,y,z) =-\frac{M_z(x)\cdot I_y(x)+M_y(x)\cdot I_{yz}(x)}{I_y(x)\cdot I_z(x)-(I_{yz}(x))^2}\cdot y+\frac{M_y(x)\cdot I_z(x)+M_z(x)\cdot I_{yz}(x)}{I_y(x)\cdot I_z(x)-(I_{yz}(x))^2}\cdot z} [6]

Falls das Deviationsmoment Iyz gleich Null ist folgt für den Spannungsanteil zufolge Biegung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_B(x,y,z) = \frac{M_y(x)}{I_y(x)} z-\frac{M_z(x)}{I_z(x)} y }

Darin ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} das Flächenträgheitsmoment des Querschnitts um die Achse, um die das Biegemoment dreht. Den Kennwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I/z} beim maximalen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} (an der äußersten Faser des Querschnitts) nennt man auch Widerstandsmoment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} . Daraus folgt ein recht bekanntes Ergebnis: die Tragfähigkeit eines Balkens ist proportional zu Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle I/h\propto b\cdot h^{2}} .

[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]:
Verbiegung (stark überhöht) eines gleichmäßig belasteten Balkens für verschiedene Auflagerpositionen; blau: Lagerung in den Bessel-Punkten

Im Falle unsymmetrischer Querschnitte muss das Koordinatensystem in Richtung der Hauptträgheitsachsen gedreht werden, damit man die Biegung in beiden Richtungen getrennt voneinander berechnen kann. Beispiel: wenn ein L-Profil von oben belastet wird, biegt es sich im Allgemeinen direkt proportional auch zur Seite hin durch. Nur in Richtung einer der beliebigen Hauptträgheitsachsen biegt sich ein Balken ausschließlich in Richtung der Belastung.

Wie stark sich ein Balken verbiegt, hängt ferner sehr stark von der Position der Auflager ab; bei gleichmäßiger Belastung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q(x)} =const erhält man aus der Differentialgleichung als optimale Lagerpositionen die Bessel-Punkte.

Die Biegespannung im Besonderen beschreibt die Kraft, welche auf den Querschnitt (z. B. eines Balkens) wirkt, der senkrecht zu seiner Ausdehnungsrichtung belastet wird.

Die Normalspannung im Balkenquerschnitt ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma(x,y,z) =\frac {N(x)}{A(x)}-\frac{M_z(x)\cdot I_y(x)+M_y(x)\cdot I_{yz}(x)}{I_y(x)\cdot I_z(x)-(I_{yz}(x))^2}\cdot y+\frac{M_y(x)\cdot I_z(x)+M_z(x)\cdot I_{yz}(x)}{I_y(x)\cdot I_z(x)-(I_{yz}(x))^2}\cdot z} [6]

Wenn die Deviationsmomente Null sind und man eine einfache Biegung in z-Richtung ohne Normalkraft hat, folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma(x,z)\,= \frac{M_y(x)}{I_y(x)}\cdot z}

Ist das Moment My positiv, treten bei reiner Biegebeanspruchung durch My für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} > 0 Zug- und für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} < 0 Druckspannungen auf. Die betragsmäßig größte Spannung tritt bei reiner Biegebeanspruchung durch My demnach in der äußersten Faser Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |z|_\mathrm{max}} auf.

Das Widerstandsmoment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} ist ein reiner Querschnittswert und gibt das Verhältnis vom angreifenden Moment zur zugehörigen Spannung Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \sigma \,} in der „kritischen“ Faser an

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W_u(x)= \frac{I_y(x)}{z_\mathrm{max}(x)}\,,\quad W_o(x)= \frac{I_y(x)}{z_\mathrm{min}(x)}}

Dabei beschreibt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} das Flächenträgheitsmoment. Für die maximale Biegespannung ergibt sich:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\sigma|_\mathrm{max}(x)= \frac {|M(x)|}{|W(x)|_\mathrm{min}}}

Je größer der Betrag des Widerstandsmomentes ist, desto kleiner ist der Betrag der Biegespannung in der Randfaser.

Datei:Poutre moment flechissant et courbure.svg
Balkenausschnitte, gebogen unter Biegemoment-Belastungen M

Beim Biegen eines Balkens werden seine auf der Zugseite liegenden Längsfasern (vorne im nebenstehenden Bild, linkes Teilbild) gedehnt und seine auf der Druckseite liegenden gestaucht (hinten im nebenstehenden Bild, linkes Teilbild). In den gedehnten Fasern entstehen Zugspannungen, in den gestauchten Druckspannungen. Der Spannungsverlauf von den außen maximalen Zug- zu den innen maximalen Druckspannungen ist i. d. R. nichtlinear, jedoch ist die lineare Verteilung eine häufige Annahme.

Bei relativ kleiner Biegung und keiner Normalkraft befindet sich die neutrale (spannungsfreie) Faser in der Mitte der Balkenhöhe. Die Zug- und die Druckspannungen in einer Querschnittsfläche sind betragsmäßig gleich groß, sofern keine Normalkraft vorliegt.

Biegelinie des Balkens

Die Durchbiegung (Auslenkung)  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w}   des Balkens an seiner Stelle  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x}   ist mit folgender linearen Differentialgleichung beschreibbar:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w''(x) = -{M_y(x) \over EI_y}\ .} [7]

Sie ist abhängig von der Belastung durch das Biegemoment  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_y(x)}   , dem Flächenträgheitsmoment    des Balkenquerschnitts und dem Elastizitätsmodul  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E}   des Balkenmaterials (Index  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle _y}  : Biegung um die Querachse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} ). Durch die erste Integration folgt die Neigung  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w'}   der Biegelinie aus ihrer Krümmung  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w''}  :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w'(x) =-{{\int_0^x M_y(\xi)\,\mathrm d\xi + C_1}\over {EI_y}}\ .}

Bei der zweiten Integration entsteht aus der Neigung der Biegelinie ihre Auslenkung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w} :

Balken auf 2 Stützen, mittige Kraft-Belastung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} (blau: Biegelinie)

Im Beispiel eines an seinen beiden Enden aufliegender Balken mit mittiger Einzellast (nebenstehendes Bild) hat der Verlauf des Biegemomentes eine Knickstelle. Die Integration wird in diesem Fall für den linken und den rechten Balkenteil üblicherweise[8] getrennt durchgeführt. Der Zusammenschluss der beiden Ergebnisse zur stetig verlaufenden Biegelinie ergibt sich daraus, dass dort sowohl ihre Neigung als auch ihre Auslenkung für beide Teile gleich ist. Im Beispiel liegt Symmetrie (in der Biegelinie und Momentenlinie) vor. Die Integration z. B. der Differentialgleichung für die linke Hälfte genügt. Diese Hälfte lässt sich auch als in der Mitte eingespannter und am anderen Ende mit der Kraft  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P/2}  (durch das Auflager) belasteter Kragbalken ansehen.

Für  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \leq L/2}   gelten:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M(x) = P x /2\ ,}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w'(x) = -{P x^2 / 4 + C_1 \over EI_y}\ ,}                                          bei    ist die Neigung    gleich Null[9]     →     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_1 = - P L^2 / 16\ ,}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(x) = -{P x^3 / 12 - P \cdot L^2 x / 16 + C_2 \over EI_y}\ ,}         bei  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x = 0}   ist die Auslenkung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w}   gleich Null     →    
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(x) = {P ( L^2 x / 16 - x^3 / 12 ) \over EI_y}} ,                               bei  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x = L/2}   ist die Auslenkung  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w}   gleich  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {P \cdot L^3 \over 48 \cdot EI_y}\ .}

Theorie Erster Ordnung: Dynamik

Bis hier wurde nur die Statik behandelt. Die Balkendynamik, etwa um Balkenschwingungen zu berechnen, basiert auf der Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (EI(x)\,w''(x,t))'' + b\,\dot{w}(x,t) + m\,\ddot{w}(x,t)= q(x,t) }

Das Problem hängt hier nicht nur vom Ort , sondern zusätzlich von der Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} ab. Es kommen zwei weitere Parameter des Balkens hinzu, nämlich die Massenverteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} und die Strukturdämpfung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} . Wenn das Bauteil unter Wasser schwingt, beinhaltet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} auch die hydrodynamische Masse, und in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} kann man eine linearisierte Form der hydrodynamischen Dämpfung einbeziehen, siehe Morison-Gleichung.

Theorie Zweiter Ordnung: Knickstab

Während bisher die Kräfte und Momente näherungsweise am unverformten Bauteil bilanziert wurden, ist es im Falle von Knickstäben erforderlich, ein Balkenelement im verformten Zustand zu betrachten. Knickstab-Berechnungen basieren auf der Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (EI(x)\,w''(x))'' + (N\,w'(x))' = q(x) }

und zwar im einfachsten Fall mit . Hinzu kommt die axial im Knickstab wirkende Druckkraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} , die je nach Randbedingungen die Knicklast nicht überschreiten darf, damit der Stab nicht ausknickt.

Differenzialbeziehungen

In der schubweichen Balkentheorie Ⅱ. Ordnung gibt es unter den Bernoullischen Annahmen folgende Differentialgleichungen für die Queranteile:

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm{d}R(x)}{\mathrm{d}x} = -q(x)} [10]
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm{d}M(x)}{\mathrm{d}x} = R(x)-N^{II}(x)\cdot\left[\frac{\mathrm dw_v}{\mathrm dx}+\frac{\mathrm dw}{\mathrm dx}\right]+m(x)} [10]
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm{d}\varphi(x)}{\mathrm{d}x} = -\left[\frac{M(x)}{E \cdot I(x)}+\kappa^e(x)\right]} [10][11]
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm{d}w(x)}{\mathrm{d}x} = \varphi(x)+\frac{V(x)}{G\tilde A(x)}} [10]

mit

  • der Laufkoordinate  entlang der Balkenachse
  • dem Elastizitätsmodul Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E}
  • dem Schubmodul Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} (Term tritt in der schubstarren Theorie nicht in den Differentialgleichungen auf)
  • dem Flächenträgheitsmoment 
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R(x)} der Transversalkraft (in der Theorie I. Ordnung gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R(x)=V(x)} )
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V(x)} der Querkraft
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N^{II}(x)} die Normalkraft nach Theorie Theorie Ⅱ. Ordnung (in der Theorie I. Ordnung tritt dieser Term in der Differenzialgleichung nicht auf)
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q(x)} der Gleichlast (Querbelastung pro Längeneinheit[11])
  • Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle M(x)} dem Biegemoment
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m(x)} dem Steckemoment (Biegebelastung pro Längeneinheit[11])
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(x)} der Verdrehung
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa^e(x)} der eingeprägten Krümmung
  • der Durchbiegung zufolge Belastung
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_v(x)} der Durchbiegung zufolge Vorverformung
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde A(x)} der Schubfläche (Term tritt in der schubstarren Theorie nicht auf).

Theorie Dritter Ordnung

Bei der Theorie Dritter Ordnung werden auch große Verformungen erfasst, die Vereinfachungen der Theorie II. Ordnung gelten hier nicht mehr.

Ein Anwendungsfall, bei dem Balkentheorie Dritter Ordnung nötig wird, ist z. B. das Verlegen von Offshore-Pipelines von einem Wasserfahrzeug aus in großen Wassertiefen, hier nur als ebener statischer Fall wiedergegeben.

Ein sehr langer Rohrstrang hängt vom Fahrzeug zum Meeresboden herunter, ist gekrümmt wie ein Seil, jedoch biegesteif. Die nichtlineare Differentialgleichung lautet hier:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle EI \, \varphi''(s) - H \, \sin\varphi(s) + (ws - V) \cos \varphi(s) = 0}

mit

  • der Koordinate Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} (Bogenlänge entlang der Pipeline)
  • dem Neigungswinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} , der mit der Horizontalkoordinate Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x(s)} und der Vertikalkoordinate in folgendem Zusammenhang steht:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sin\varphi(s) = \frac{\partial z(s)}{\partial s}}
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} ist die entlang der Pipeline konstante Horizontalkomponente der Schnittkraft (Horizontalzug); H wird dadurch beeinflusst, wie stark das Fahrzeug mit seinen Ankern und dem Tensioner an der Pipeline zieht, damit sie nicht durchsackt und bricht; der Tensioner ist eine Vorrichtung aus zwei Raupenketten, die die Pipeline an Bord einspannt und sie unter Zugbelastung hält
  • dem Gewicht pro Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w} , abzüglich Auftrieb
  • einer Rechengröße Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} , die man sich als kleine Bodenauflagerkraft vorstellen kann.

Geschichte

Nach vorherigen vorwiegend gedanklichen Experimenten von Leonardo da Vinci wurde die Balkentheorie von Galileo Galilei begründet. Mit den Arbeiten von Claude Louis Marie Henri Navier wurde ein vorläufiger, klassische Balkentheorie genannter Abschluss erreicht.

„Väter“ der klassischen Biegetheorie von Leonardo da Vinci bis Navier:

  • Leonardo da Vinci (1452–1519) – Zugversuche an Drähten
  • Galileo Galilei (1564–1642) – Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti alla mecanica e i movimenti locali: Zugfestigkeit von Marmorsäulen, Seilen und Drähten (erster Tag), Betrachtungen zur Bruchfestigkeit von Balken (zweiter Tag)
  • Edme Mariotte (1620–1684) – Lineare Verteilung der Faserdehnungen über Querschnitt, neutrale Faser in halber Höhe des doppeltsymmetrischen Balkenquerschnitts
  • Robert Hooke (1635–1703) – Proportionalität zwischen Dehnung und Spannung (Hookesches Gesetz)
  • Isaac Newton (1643–1727) – Gleichgewicht der Kräfte, Infinitesimalrechnung
  • Gottfried Wilhelm Leibniz (1646–1716) – Infinitesimalrechnung, Widerstandsmoment[12]
  • Jakob I Bernoulli (1655–1705) – Annahmen, die die Theorie vereinfachen: ebene und zur Balkenachse senkrechte Querschnittsfläche ist auch nach der Biegung eben und zur Balkenachse senkrecht
  • Leonhard Euler (1707–1783) – erster Versuch zur Behandlung eines statisch unbestimmten Systems (vierbeiniger Tisch), Untersuchung des Knickens von Stäben (Theorie zweiter Ordnung)
  • Charles Augustin de Coulomb (1736–1806) – erste durch die Infinitesimalrechnung zusammenhängende Darstellung der Balken-, Gewölbe- und Erddrucktheorie; Baustatik wird „wissenschaftlicher Gegenstand“
  • Johann Albert Eytelwein (1764–1848) – Lösung statisch unbestimmter Systeme: Durchlaufträger
  • Claude Louis Marie Henri Navier (1785–1836) – seine Arbeiten stellen die „Konstituierungsphase der Baustatik“ dar; er führt in seiner Technischen Biegetheorie die mathematisch-mechanische Analyse der elastischen Linie (Bernoulli, Euler) und die vornehmlich ingenieurmäßig orientierte Balkenstatik zusammen;
  • Georg Rebhann (1824–1892) – gab 1856 Formeln für den Biegespannungsnachweis von einfachsymmetrischen Querschnitten an.

Literatur

  • D. Gross, W. Hauger, J. Schröder, W. A. Wall: Technische Mechanik. Band 1–3, Springer, Berlin 2006 / 2007, DNB 550703683.
  • István Szabó: Einführung in die Technische Mechanik. Springer, Berlin 2001, ISBN 3-540-67653-8.
  • Peter Gummert, Karl-August Reckling: Mechanik. Vieweg, Braunschweig 1994, ISBN 3-528-28904-X.
  • Karl-Eugen Kurrer: Geschichte der Baustatik. Auf der Suche nach dem Gleichgewicht, Ernst und Sohn, Berlin 2016, S. 88f., S. 395–412 und S. 452–455, ISBN 978-3-433-03134-6.

Siehe auch

Einzelnachweise

  1. Fritz Stüssi: Baustatik I. 4. Auflage. 1971, ISBN 3-7643-0374-3, ab S. 173
  2. Pichler, Bernhard. Eberhardsteiner, Josef: Baustatik VO - LVA-Nr 202.065. Wien 2016, ISBN 978-3-903024-17-5, 2.7.1 Queranteile und 10.2 Ausgewählte Lastglieder für die Queranteile (TU Verlag [abgerufen am 10. Dezember 2016]). TU Verlag (Memento des Originals vom 13. März 2016 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/shop.tuverlag.at
  3. Oliver Romberg, Nikolaus Hinrichs: Keine Panik vor Mechanik! – Erfolg und Spaß im klassischen „Loser-Fach“ des Ingenieurstudiums. In: Studieren ohne Panik. 8., überarbeitete Auflage. Band 4. Vieweg+Teubner Verlag, 2011, ISBN 978-3-8348-1489-0 (349 S., springer.com [PDF] Erstausgabe: 1999).
  4. B. Kauschinger, St. Ihlenfeldt: 6. Kinematiken. (Nicht mehr online verfügbar.) Archiviert vom Original am 27. Dezember 2016; abgerufen am 27. Dezember 2016.
  5. Jürgen Fröschl, Florian Achatz, Steffen Rödling, Matthias Decker: Innovatives Bauteilprüfkonzept für Kurbelwellen. In: MTZ-Motortechnische Zeitschrift. Band 71, Nr. 9. Springer, 2010, S. 614–619 (springer.com).
  6. a b Herbert Mang, G Hofstetter: Festigkeitslehre. Hrsg.: Springer Verlag. (3. Auflage). Wien / New York 2008, ISBN 978-3-211-72453-8, 6.4 „Normalspannungen“, S. 156 (487 S., springer.com).
  7. siehe Hauptartikel: Biegelinie
  8. Es ist mit Heaviside-Funktionen möglich über den ganzen Balken zu integrieren
  9. Aufgrund von Symmetrie der Biegelinie folgt, die Antimetrie der Verdrehunglinie somit folgt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle w'(x=\frac l2^-)=-w'(x=\frac l2^+)} ist, da keine eingeprägte Winkeländerung (an diesem Punkt) vorliegt, ist der Winkel stetig und somit der linkswertige Grenzwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle w'(x=\frac l2^-)} gleich dem rechtswertigen Grenzwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle w'(x=\frac l2^+)} , aus diesen Beiden Formeln folgt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle w'(x=\frac l2^+)=-w'(x=\frac l2^+)} und aus dieser Gleichung folgt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle w'(x=\frac l2^+)=0} ist
  10. a b c d Bernhard Pichler: 202.068 Baustatik 2. WS2013 Auflage. Wien 2013, VO_06_ThIIO_Uebertragungsbeziehungen (Onlineplattform der TU Wien).
  11. a b c Pichler, Bernhard. Eberhardsteiner, Josef: Baustatik VO LVA-Nr 202.065. Hrsg.: TU Verlag. SS2016 Auflage. TU Verlag, Wien 2016, ISBN 978-3-903024-17-5, Lineare Stabtheorie ebener Stabtragwerke (520 Seiten, Grafisches Zentrum an der Technischen Universität Wien [abgerufen am 12. Januar 2017]). Grafisches Zentrum an der Technischen Universität Wien (Memento des Originals vom 13. März 2016 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.grafischeszentrum.com
  12. IFBS: 8.3 Von Galileos Biegetheorie zur Sandwichtheorie siehe: Die großen Mathematiker greifen ein (Memento vom 15. März 2016 im Internet Archive)