Chen-Primzahl

aus Wikipedia, der freien Enzyklopädie

In der Zahlentheorie ist eine Chen-Primzahl eine Primzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \in \mathbb P} , für welche gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p+2} ist entweder eine Primzahl oder ein Produkt von zwei Primzahlen (eine sogenannte Semiprimzahl).

Diese Primzahlen wurden von Ben Green und Terence Tao als Erinnerung an den chinesischen Mathematiker Chen Jingrun benannt.[1]

Geschichte

Eines der bekanntesten ungelösten Probleme der Mathematik ist die Goldbachsche Vermutung aus dem Jahr 1742, welche besagt, dass jede gerade Zahl (größer als 2) die Summe zweier Primzahlen ist. Seit hunderten Jahren beißen sich die Mathematiker daran die Zähne aus und David Hilbert hat diese Vermutung im Jahr 1900 zu einem der 23 wichtigsten mathematischen Probleme erklärt. 14 dieser Probleme wurden mittlerweile gelöst, sechs Probleme wurden teilweise gelöst und nur drei Probleme wurden nicht gelöst. Die Goldbachsche Vermutung ist eine von diesen übrig gebliebenen drei Problemen (Hilberts achtes Problem). Der chinesische Mathematiker Chen Jingrun hat im Jahr 1966 den nach ihm benannten Satz von Chen bewiesen (wegen der chinesischen Kulturrevolution aber erst 1973 veröffentlicht),[2] welcher besagt, dass jede hinreichend große gerade Zahl als Summe zweier Primzahlen oder einer Primzahl und einer Semiprimzahl (also einer Zahl mit zwei Primfaktoren) geschrieben werden kann.[3][4] Dieser Satz ist die bisher beste Annäherung an die oben erwähnte Goldbachsche Vermutung. Wenn jetzt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} eine Chen-Primzahl ist, dann erfüllt die gerade Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2p+2} die Voraussetzungen vom Satz von Chen (man kann sie in der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2p+2=p+(p+2)} als Summe einer Primzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} und einer Prim- oder Semiprimzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p+2} darstellen). Mit dem Satz von Chen wurde somit bewiesen, dass es unendlich viele solcher Chen-Primzahlen gibt. Wenn außerdem die mathematische Vermutung, dass es unendlich viele Primzahlzwillinge gibt, irgendwann einmal bewiesen sein wird (auch an dieser Frage sind schon seit Jahrhunderten viele Mathematiker gescheitert), hätte man einen alternativen Beweis gefunden, dass es unendlich viele Chen-Primzahlen gibt.

Beispiele

  • Die Primzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=41} ist eine Chen-Primzahl, weil auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p+2=43} eine Primzahl ist.
  • Die Primzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=83} ist eine Chen-Primzahl, weil Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p+2=85=5 \cdot 17} eine Semiprimzahl ist, also genau zwei Primteiler hat.
  • Die Primzahl ist eine Chen-Primzahl, weil Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p+2=49=7^2} eine Semiprimzahl ist, also genau zwei Primteiler hat.
  • Die Primzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=43} ist keine Chen-Primzahl, weil Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p+2=45=5 \cdot 3^2} keine Semiprimzahl ist, weil sie drei Primteiler hat.
  • Die ersten Chen-Primzahlen sind die folgenden:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409, … (Folge A109611 in OEIS)
Die ersten Primzahlen, die nicht Chen-Primzahlen sind, kann man der folgenden Liste entnehmen:
43, 61, 73, 79, 97, 103, 151, 163, 173, 193, 223, 229, 241, 271, 277, 283, 313, 331, 349, 367, 373, 383, 397, 421, 433, 439, 457, 463, 523, 547, 593, 601, 607, 613, 619, 643, 661, 673, 691, 709, 727, 733, 739, 757, 773, 823, 853, 859, 883, 907, 929, 967, 997, … (Folge A102540 in OEIS)
  • Die ersten Chen-Primzahlen, die nicht der kleinere Teil eines Primzahlzwillings sind (für die also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p+2} eine Semiprimzahl ist), sind die folgenden:
2, 7, 13, 19, 23, 31, 37, 47, 53, 67, 83, 89, 109, 113, 127, 131, 139, 157, 167, 181, 199, 211, 233, 251, 257, 263, 293, 307, 317, 337, 353, 359, 379, 389, 401, 409, 443, 449, 467, 479, 487, 491, 499, 503, 509, 541, 557, 563, 571, 577, 587, 631, 647, 653, 677, … (Folge A063637 in OEIS)
  • Die bisher größte Chen-Primzahl (Stand: 10. Juli 2018) ist die folgende:[5][6]
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=2996863034895 \cdot 2^{1290000}-1}
Sie hat 388342 Stellen und wurde am 14. September 2016 von Tom Greer entdeckt. Sie ist der kleinere Teil des bisher größten bekannten Primzahlzwillings .

Eigenschaften

  • Es gibt unendlich viele Chen-Primzahlen.[3][4]
  • Ist eine Chen-Primzahl Teil eines Primzahlzwillings, so ist sie der kleinere Teil des Primzahlzwillings.
Beweis:
Da bei Chen-Primzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p+2} eine Primzahl oder eine Semiprimzahl sein muss, ist beim Primzahlzwilling Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (p,p+2)} die Chen-Primzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} stets der kleinere Teil. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Box}
  • Es gibt magische Quadrate, die nur aus Chen-Primzahlen bestehen. Das magische Quadrat mit den kleinsten Chen-Primzahlen ist das folgende:
17 89 71
113 59 5
47 29 101
Es wurde von Rudolf Ondrejka entdeckt.[1]
  • Es gibt unendlich viele Chen-Primzahlen in arithmetische Folgen der Länge 3 (die Differenz zweier Folgenglieder ist konstant).[7]
(Obiger Satz konnte von Ben Green und Terence Tao im Jahr 2005 bewiesen werden.)
Beispiel:
Die bisher (Stand: 10. Juli 2018) größte Primzahlfolge der Länge 3, die ausschließlich aus Chen-Primzahlen besteht, ist die folgende:[8]
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle p_{n}=(3850324118+892819689\cdot n)\cdot 2411\#+1)\cdot (4787\#+1)-2} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=0,1,2}
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p\#=2 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot p} das Produkt aller Primzahlen bis inklusive Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} (Primfakultät).
Diese drei Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_n} haben allesamt je 3074 Stellen. Für alle drei Primzahlen ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_n+2} eine Semiprimzahl (haben also genau zwei Primfaktoren). Weil diese drei Primzahlen eine arithmetische Folge bilden, ist von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1} gleich weit entfernt wie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_2} (es ist also Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle p_{2}-p_{1}=p_{1}-p_{0}} ).
  • Es gibt unendlich viele Chen-Primzahlen in arithmetischen Folgen beliebiger Länge.[9]
(Dieser Satz wurde von Binbin Zhou im Jahr 2009 bewiesen und stellt eine Verbesserung des vorherigen Satzes dar.)

Verallgemeinerung

Eine verallgemeinerte Chen-Primzahl ist eine Primzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \in \mathbb P} , für welche gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p+k} mit einer natürlichen Zahl ist entweder eine Primzahl oder ein Produkt von zwei Primzahlen (eine sogenannte Semiprimzahl).

Eigenschaften

  • Es gibt unendlich viele verallgemeinerte Chen-Primzahlen.[3]

Wissenswertes

Es sieht so aus, als ob es mehr Chen-Primzahlen gibt als Nicht-Chen-Primzahlen (siehe obige Primzahllisten). Unter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=100} gibt es 20 Chen-Primzahlen, aber nur 5 Nicht-Chen-Primzahlen. Auch unter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=1000} überwiegt die Anzahl der Chen-Primzahlen (nämlich 115), denn Nicht-Chen-Primzahlen gibt es darunter nur 53. Dieses Verhältnis ändert sich allerdings mit zunehmender Größe der Primzahlen. Unter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=17107} gibt es 986 Chen-Primzahlen und auch 986 Nicht-Chen-Primzahlen. Danach überwiegen die Nicht-Chen-Primzahlen. Dieser Sachverhalt ist ein erneutes Beispiel dafür, dass man sich nicht von Regelmäßigkeiten, die man bei kleinen Zahlen zu bemerken glaubt, auch für alle anderen, größeren Zahlen stimmen müssen. Bei der oben schon erwähnten Goldbachschen Vermutung (jede gerade Zahl (größer als 2) kann als Summe zweier Primzahlen dargestellt werden) wurde die Vermutung mit Computertechnik schon bis zur Größenordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=10^{18}} (also bis eine Trillion) geprüft (Stand: 30. Dezember 2015)[10] und für richtig befunden, deswegen glaubt kaum ein Mathematiker daran, dass sich diese Vermutung als falsch entpuppt (für den Beweis dieser Vermutung wurde sogar ein Preisgeld von einer Million Dollar ausgelobt, doch es konnte diese Vermutung trotzdem niemand beweisen), doch niemand kann ausschließen, dass sich nicht doch irgendwann einmal ein Gegenbeispiel auftut, und sei es in der Größenordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=10^{100000}} oder noch höher.

Einzelnachweise

  1. a b Chen prime. In: PlanetMath. (englisch)
  2. Neil Sloane: Chen primes: primes p such that p + 2 is either a prime or a semiprime – Comments. OEIS, abgerufen am 10. Juli 2018.
  3. a b c Chen Jingrun: On the representation of a larger even integer as the sum of a prime and the product of at most two primes. In: Scientia Sinica 16 (2). 1973, S. 157–176, abgerufen am 10. Juli 2018 (englisch).
  4. a b Konstantin Fackeldey: Die Goldbachsche Vermutung und ihre bisherigen Lösungsversuche. Freie Universität Berlin, 2002, S. 26, abgerufen am 10. Juli 2018 (deutsch).
  5. Chris K.Caldwell: The Top Twenty: Twin Primes. Prime Pages, abgerufen am 10. Juli 2018.
  6. 2996863034895 • 21290000 - 1 auf Prime Pages
  7. Ben Green, Terence Tao: Restriction theory of the Selberg sieve, with applications. Journal de Théorie des Nombres, 2005, S. 1–36, abgerufen am 10. Juli 2018.
  8. Eric W. Weisstein: Chen Prime. In: MathWorld (englisch).
  9. Binbin Zhou: The Chen primes contain arbitrarily long arithmetic progressions. Acta Arithmetica 138 (4), 2009, S. 301–315, abgerufen am 10. Juli 2018.
  10. Tomás Oliveira e Silva: Goldbach conjecture verification. 2015, abgerufen am 10. Juli 2018.

Weblinks