Euler-Maclaurin-Formel

aus Wikipedia, der freien Enzyklopädie

Die Euler-Maclaurin-Formel oder Eulersche Summenformel (nach Leonhard Euler (1707–1783) und Colin Maclaurin (1698–1746)) ist eine mathematische Formel zur Berechnung einer Summe von Funktionswerten durch die Werte der Ableitungen dieser Funktion an den Summationsgrenzen – so ist Euler auf sie gestoßen. In einer abgewandelten Form ermöglicht sie die numerische Approximation eines bestimmten Integrals über einzelne Werte des Integranden und seiner Ableitungen – so hat sie Maclaurin hergeleitet.

Notationshinweis

Für eine genügend oft differenzierbare Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} ist im gesamten Artikel für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j\in\N_0} die Schreibweise eine Kurznotation für

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left.\frac{\mathrm{d}^j f(x)}{\mathrm{d}x^j} \right|_{x=c},}

die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j} -te Ableitung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} , ausgewertet an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c.}

Euler-Maclaurin-Formel zur Integralapproximation

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \in \N_0,\; g \in C\,^{2k+2}[0,1]} gegeben, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} also eine Funktion, die auf dem Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [0,1]} mindestens Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2k+2)} -mal stetig differenzierbar ist. Dann existiert eine Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi \in{]0,1[},} sodass

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_0^1 g(t)\,\mathrm dt = \frac{g(1)}{2} + \frac{g(0)}{2} - \sum_{j=1}^{k}\frac{B_{2j}}{(2j)!}\left(g\,^{(2j-1)}(1)-g\,^{(2j-1)}(0)\right) - \frac{B_{2k+2}}{(2k+2)!}g\,^{(2k+2)}(\xi)}

gilt, wobei die Bernoulli-Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (B_2=1/6, B_4=-1/30, \ldots)} sind.

Dies ist eine einfache Form der Euler-Maclaurinschen Summenformel, bei der die Summation nur zwei Terme (mit Index 0 und 1) umfasst.[1] Der Term Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{g(0)}{2} + \tfrac{g(1)}{2}} ist genau die Approximation eines Integrals durch den Flächeninhalt eines Trapezes. Die nachfolgende Summe liefert ein Korrekturglied und der letzte Summand den Fehler, der dabei entsteht. Daher heißt diese Formel in der numerischen Integrationstheorie auch „Trapezregel mit Endkorrektur“. Mit dieser Formel ist es nur dann möglich, den Fehler der Trapezregel für das Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [0,1]} zu bestimmen, wenn man kennt. Somit stellt diese Formel zwar keine Abschätzung, sondern eine Gleichheit dar, allerdings nur in Form einer Existenzaussage.

Euler-Maclaurin-Formel zur Summenapproximation

Die übliche Fassung[1] obiger Summenformel mit effektiver Restgliedangabe erhält man, indem man sie umstellt zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{g(1)}{2} + \frac{g(0)}{2} = \int_0^1 g(t)\,\mathrm dt + \sum_{j=1}^{k}\frac{B_{2j}}{(2j)!}\left(g\,^{(2j-1)}(1)-g\,^{(2j-1)}(0)\right) + \frac{B_{2k+2}}{(2k+2)!}g\,^{(2k+2)}(\xi)}

und dann die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} durch eine Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} ersetzt, die in einem beliebigen Intervall mit Endpunkten aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Z} angewendet wird, aber das Restglied explizit als Funktion der „nächsten“ Ableitung berechnet. Dazu summiert man einfach diese Formel (mit explizitem Restglied), angewendet auf entsprechend viele verschobene Einheitsintervalle, die das gegebene Intervall aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Z} genau abdecken, auf. Sei und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [m,n] \subset \R} mindestens Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2k+1)} -mal stetig differenzierbar auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [m,n]} , dann erhält man so

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \sum _{i=m}^{n}f(i)=\int _{m}^{n}f(x)\,\mathrm {d} x+{\frac {f(n)+f(m)}{2}}+\sum _{j=1}^{k}{\frac {B_{2j}}{(2j)!}}\left(f^{(2j-1)}(n)-f^{(2j-1)}(m)\right)+R_{2k}(m,n),}

wobei

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{2k}(m,n) = \int_{m}^{n} \frac{B_{2k+1}(x-\lfloor x\rfloor)}{(2k+1)!} f^{(2k+1)}(x)\,\mathrm{d}x = (-1)^{2k+1}\int_{m}^{n} \frac{B_{2k}(x-\lfloor x\rfloor)}{(2k)!} f^{(2k)}(x)\,\mathrm{d}x}

mit den Bernoulli-Polynomen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{h}\colon [0,1] \mapsto \R} ist. Dies ist die Euler-Maclaurin-Summenformel zur Bestimmung der Reihe für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(i),} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \in C\,^{2k}[m,n]} schon ausreichend ist. Verwendet man ferner die Konvention

für die „Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (-1)} -te Ableitung“, so lässt sich die Formel wesentlich eleganter zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall \ell \le 2k\colon \quad \sum_{i = m}^{n} f(i) = f(n) + \sum_{j = 0}^{\ell} \frac{B_{j}}{j!} \left(f^{(j-1)}(n) - f^{(j-1)}(m)\right) + R_{\ell}(m,n)}

umschreiben – man muss nicht bei einem geraden Index die Summation abbrechen, um eine Restgliedbestimmung zu machen – wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_1 = -1/2} die einzige Bernoulli-Zahl ungleich 0 mit ungeradem Index ist. Wird nun noch der Grenzübergang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell \to \infty} durchgeführt, erhält man

für die praktische Anwendung. Dabei ist allerdings zu beachten, dass dies oft keine konvergente, sondern nur eine asymptotische Reihe, genauer eine Entwicklung nach Ableitungen der Funktion, darstellt.

Nutzt man zusätzlich die sogenannten Bernoulli-Zahlen zweiter Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{j}^\ast = (-1)^jB_j,\, B^\ast_1 = -B_1 = 1/2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{j}^\ast = B_{j}} für alle anderen Indizes – man beachte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{j} = 0} für alle ungeraden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j \neq 1}  –, so lässt sich die obige Gleichung in eine symmetrischere Form umschreiben:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{i = m}^{n} f(i) = \sum_{j = 0}^{\infty} \frac{1}{j!} \left(B_{j}^\ast f^{(j-1)}(n) - B_{j} f^{(j-1)}(m)\right)}

Anwendungen

  • Das klassische Problem der Bestimmung der Potenzsummen der ersten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} natürlichen Zahlen lässt sich nun einfach mittels transformieren zu
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{i = 1}^{n} i^a = f(1) + \sum_{j = 0}^{\infty} \frac{B_{j}^\ast}{j!} \frac{a!}{(a-j+1)!} \left(n^{a-j+1} - 1 \right) = \zeta(-a) + \sum_{j=0}^\infty\frac{B_{j}^\ast}{a+1} {a+1 \choose j} n^{a+1-j},}
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \zeta} die Riemannsche Zetafunktion bezeichnet. Diese Gleichung gilt für Exponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in \N_0} sogar exakt (nicht nur asymptotisch), da in diesem Fall alle Summanden ab dem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a\!+\!2)} -ten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j} -Index gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} sind und man somit die Faulhaberschen Formeln erhält. Die obige Gleichung ist sogar für alle benutzbar, wenn man die Binomialkoeffizienten (wie üblich) bei reellem Argument mittels der fallenden Faktorielle interpretiert und ihre einzige „formale Singularität“, im Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a=-1} den undefinierten Term Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{n^0}{0}} , als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ln(n)} ansieht und den Wert der Zetafunktion an ihrer Polstelle bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1} , wie bei der Fouriertransformation auch, als arithmetisches Mittel der links- und rechtsseitigen Grenzwerte interpretiert.
  • Ein weiteres klassisches Beispiel ist die Wahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) = \ln(x)} , wodurch man aus der Summationsformel die allgemeine (logarithmierte) Stirling-Reihe erhält und so die Fakultäten näherungsweise auch für sehr große Argumente schnell oder die Gammafunktion für nicht ganzzahlige Argumente berechnen kann.
  • Ein Anwendungsgebiet der Numerik wird eröffnet, wenn man die Euler-Maclaurin-Formel nach ihrem Integral umstellt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall n,m\in\Z\colon}
sodass man eine Formel zur Integration gewinnt. Dies ist auch eine effiziente Anwendung zur numerischen Integration, die in der Praxis oft genutzt wird.
  • Benutzt man an Stelle der Trapezregel die Mittelpunktsregel, ersetzt man also die Summation der Funktionswerte durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum\nolimits_{i=m+1}^{n} f(i-\tfrac{1}{2}),} so kann man die manchmal problematische Funktionsauswertung an den Rändern vermeiden. Dies ist besonders dann der Fall, wenn der Integrand auf dem Rand numerisch instabil (z. B. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{x}{\sin x}} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=0} ) oder nicht definiert ist (bspw. für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=-1} ). Hierbei werden die Differenzen der ungeraden Ableitungen jeweils um den Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1-2^{-j})} verkleinert. Die Beiträge der Differenzen zum Gesamtfehler werden also kleiner, wie es bei Anwendung der Mittelpunktsregel zu erwarten ist. Der Faktor findet sich ähnlich auch in der Romberg-Integration gerader und ungerader Funktionen wieder. Es ist zu berücksichtigen, dass sich auch bei Anwendung der Mittelpunktsregel die Differenzen der Ableitung auf die Integralränder beziehen.
  • Eine wichtige Anwendung hat die Euler-Maclaurin-Formel bei periodischen Funktionen, die über eine oder mehrere Perioden integriert werden sollen. Für solche Funktionen sind auch alle Ableitungen an den Integralgrenzen identisch gleich und deshalb verschwinden dort (auch) die Summe der Differenzen der (ungeraden) Ableitungen. Das Integral lässt sich also durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -fache Anwendung der Trapezregel mit einem Fehler der Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal O(2n)} approximieren.[2] Dies erklärt unter anderem, warum die diskrete Fouriertransformation durch Summation und die Approximation mittels Tschebyschow-Polynomen eine so hohe Genauigkeit hat. Hierbei ist zu bemerken, dass sich die diskrete Fouriertransformation üblicherweise auf die Euler-Maclaurin-Formel mit Trapezregel bezieht, während die Approximation mit Tschebyschow-Polynomen die Mittelpunktsregel nutzt. Bei Anwendungen kann man aber auch mit der jeweils anderen Summationsregel arbeiten. Die Gleichwertigkeit wird mit der Euler-Maclaurin-Formel bewiesen.
  • Die Euler-Maclaurin-Formel ermöglicht auch eine wichtige Anwendung bei Funktionen, die an beiden Integralgrenzen so gespiegelt werden können, dass sie zusammen mit allen Ableitung stetig fortsetzbar sind. Für solche Funktionen sind alle ungeraden Ableitungen an den Integralgrenzen gleich null, und deshalb verschwindet die Summe der Differenzen der ungeraden Ableitungen ebenfalls. Folglich ist auch hier der Fehler von der Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal O(2n).} Unabhängig von den theoretischen Hintergründen der Gauß-Quadratur lässt sich die Gauß-Tschebyschew-Integration bzw. das Integral Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \int_{0}^{\pi}\,g(\cos\,t)\,\mathrm dt} allein mit der Euler-Maclaurin-Formel herleiten.[3]

Literatur

  • Donald Ervin Knuth: The Art of Computer Programming. In: Fundamental Algorithms. 3. Auflage. Band 1. Addison-Wesley Longman, Amsterdam 1997, ISBN 0-201-89683-4, Kap. 1.2.11.2, S. 111–115.
  • Konrad Knopp: Theorie und Anwendung der unendlichen Reihen. 6. Auflage. Springer, Berlin/Heidelberg 1996, ISBN 3-540-59111-7, Kap. XIV, S. 536 ff. (Ausgabe von 1964 [abgerufen am 26. Dezember 2012]).
  • Josef Stoer, Roland Bulirsch: Einführung in die Numerische Mathematik II. 5. Auflage. Springer, New York/Berlin/Heidelberg u. a. 2005, ISBN 978-3-540-23777-8, Kap. 3.3.

Einzelnachweise

  1. a b Josef Stoer: Einführung in die Numerische Mathematik I. 4. Auflage. Springer, New York / Berlin / Heidelberg u. a. 1983, ISBN 3-540-12536-1, Kap. 3.2, S. 114.
  2. Matthias Gerdts (Universität Würzburg): Numerische Mathematik I. (PDF; 1,6 MB) In: unibw.de. Universität der Bundeswehr München, S. 172–175, abgerufen am 2. Juli 2019 (WiSe 2009/2010).
  3. Ilja Nikolajewitsch Bronstein, Konstantin Adolfowitsch Semendjajew; Günter Grosche, Viktor Ziegler, Dorothea Ziegler: Teubner-Taschenbuch der Mathematik. „Der Bronstein“. Hrsg.: Eberhard Zeidler. 1. Auflage. B. G. Teubner, Stuttgart/Leipzig/Wiesbaden 1996, ISBN 3-8154-2001-6, S. 1134.