Poincaré-Lemma
Das Poincaré-Lemma ist ein Satz aus der Mathematik und wurde nach dem französischen Mathematiker Henri Poincaré benannt.
Exakte und geschlossene Differentialformen
- Eine Differentialform Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega} vom Grad Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} heißt geschlossen, falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d} \omega = 0} gilt. Dabei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}} die äußere Ableitung.
- Eine Differentialform vom Grad Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} heißt exakt, falls es eine -Differentialform gibt, so dass gilt. Die Form nennt man eine Potentialform von
Die Potentialform ist nicht eindeutig bestimmt, sondern nur "bis auf Umeichung" (siehe unten).
Wegen ist jede exakte Differentialform auch geschlossen. Das Poincaré-Lemma gibt Voraussetzungen an, unter denen auch die umgekehrte Aussage gilt. Beim Beweis ergibt sich darüber hinaus eine Verallgemeinerung des Lemmas: Von jeder Differentialform lässt sich „per Konstruktion“ ein exakter Anteil abspalten.
Aussage
Das Poincaré-Lemma besagt, dass jede auf einer sternförmigen offenen Menge definierte geschlossene Differentialform exakt ist.
Die Aussage lässt sich abstrakter auch so formulieren: Für eine sternförmige offene Menge verschwindet die -te De-Rham-Kohomologie für alle :
Im dreidimensionalen Spezialfall besagt das Poincaré-Lemma, in die Sprache der Vektoranalysis überführt, dass ein auf einem einfach-zusammenhängenden Gebiet definiertes wirbelfreies Vektorfeld als Gradient eines Potentialfeldes (Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle k=1} ), ein quellfreies Vektorfeld auf einem konvexen Gebiet durch Rotation eines Vektorpotentials (), und eine skalare Felddichte („Quellendichte“) als Divergenz eines Vektorfeldes () dargestellt werden können.
Beweis (konstruktiv)
Sei der Punkt, um welchen herum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U \subset \mathbb{R}^{n} } sternförmig ist. Das Poincaré-Lemma gibt explizit eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (k-1)} -Form an, und zwar mit folgender Formel: Einer beliebigen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \omega^k = \sum \omega_{I} {\rm d}x_{I}} lässt sich, Geschlossenheit nicht notwendig vorausgesetzt, eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (k-1)} -Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P^{k-1}(\omega^k)} zuordnen, aus der sich bei Geschlossenheit die gesuchte Potentialform ergibt: Diese zugeordnete Form lässt sich durch folgende Abbildung definieren:
- .
(Das Dachsymbol in der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i_\alpha} -ten Spalte der rechten Seite bedeutet, dass das entsprechende Differential ausgelassen wird.)
Nun zeigt man direkt, dass folgende Identität gilt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega^k\equiv \mathrm P^{{k}}({\rm d}\omega^k) + {\rm d}{\mathrm P^{k-1}(}\omega^k \mathrm )\,,} was formal der Produktregel der Differentiation entspricht und die durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega^k} repräsentierten Eigenschaften in zwei Anteile zerlegt, von denen der zweite die gesuchte Eigenschaft besitzt.
Wegen der Voraussetzung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\rm d}\omega^k \equiv 0} und wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d} \circ \mathrm{d} = 0} ergibt sich zunächst Dies gilt ohne Einschränkung der Allgemeinheit auch ohne das vorderste Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm d} der rechten Seite, und zwar deshalb, weil durch die Forderung die Form nur am Nullpunkt betrachtet wird, sodass wie beim Totalen Differential einer Funktion aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm dP^k=0} bis auf sog. Eichtransformationen (siehe unten) auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm P^k=0} gefolgert werden kann.
Somit bleibt nur der letzte Term der obigen Identität, und es folgt die gesuchte Aussage: mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta^{k-1}\,:=\,\mathrm P^{k-1}(\omega^k )\,.}
Die angegebene Identität verallgemeinert zugleich das Poincarésche Lemma durch Zerlegung einer beliebigen Differentialform Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega} in einen nicht-exakten („anholonomen“) und einen exakten („holonomen“) Anteil (die eingeklammerten Bezeichnungen entsprechen den sog. Zwangskräften in der analytischen Mechanik). Es entspricht zugleich der Zerlegung eines beliebigen Vektorfeldes in einen Wirbel- und einen Quellen-Anteil.
In der Sprache der homologischen Algebra ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} eine kontrahierende Homotopie, die z. B. auf den zentralen Punkt des hier betrachteten sternförmigen Gebietes kontrahiert.
Umeichung
Das so definierte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta^{k-1}} ist nicht die einzige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (k-1)} -Form, deren äußeres Differential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\omega}^k} ist. Alle anderen unterscheiden sich aber höchstens um das Differential einer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (k-2)} -Form voneinander: Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta^{k-1}_2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta^{k-1}_1} zwei solche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (k-1)} -Formen, so existiert eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (k-2)} -Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi^{k-2}} derart, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta_2^{k-1} = \eta_1^{k-1} + \mathrm d \xi^{k-2}} gilt.
Der Zusatz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle +\, \mathrm d \xi^{k-2}} wird auch als Eichtransformation bzw. Umeichung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta_1^{k-1}} bezeichnet.
Anwendung in der Elektrodynamik
Aus der Elektrodynamik ist der Fall eines von einem stationären Strom erzeugten Magnetfeldes bekannt, mit dem sog. Vektorpotential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec A(\mathbf r )\,.} Dieser Fall entspricht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k=2} , wobei das sternförmige Gebiet der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb R^3} ist. Der Vektor der Stromdichte ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec j} und entspricht der Stromform Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf I :=j_1(x,y,z){\rm d}x_2\wedge {\rm d}x_3+j_2(x,y,z){\rm d}x_3\wedge {\rm d}x_1+j_3(x,y,z){\rm d}x_1\wedge {\rm d}x_2\,.} Für das Magnetfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec B} gilt Analoges: es entspricht der Magnetflussform Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_B:=B_1{\rm d}x_2\wedge {\rm d}x_3 +\dots } und lässt sich aus dem Vektorpotential ableiten: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \vec B = \operatorname{rot} \vec A = \left( \tfrac{\partial A_3}{\partial x_2}-\tfrac{\partial A_2}{\partial x_3} , \tfrac{\partial A_1}{\partial x_3}-\tfrac{\partial A_3}{\partial x_1} ,\tfrac{\partial A_2}{\partial x_1}-\tfrac{\partial A_1}{\partial x_2}\right)^t} , oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_B={\rm d}\mathbf A} . Dabei entspricht das Vektorpotential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec A} der Potentialform Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf A:=A_1{\rm d}x_1+A_2{\rm d}x_2+A_3{\rm d}x_3\,.} Die Geschlossenheit der Magnetflussform entspricht der Quellenfreiheit des Magnetfeldes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\operatorname{div} \vec B \equiv 0\,).}
Unter Verwendung der Coulomb-Eichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{div} \vec A\stackrel{!}{=}0} bzw. passend zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{div} \vec j\stackrel{!}{=}0} gilt dann für i=1,2,3
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_i(\vec r) =\int \frac{\mu_0 j_i(\vec r^{\,'})\,\, dx_1'dx_2'dx_3'}{4\pi |\vec r -\vec r^{\,'}|}\,,}
dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_0} eine Naturkonstante, die sogenannte Magnetische Feldkonstante.
An dieser Gleichung ist u. a. bemerkenswert, dass sie vollständig einer bekannten Formel für das elektrische Feld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec E} entspricht, dem Coulombpotential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\phi (x_1,x_2, x_3)} einer gegebenen Ladungsverteilung mit der Dichte . Man vermutet an dieser Stelle bereits, dass
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec E} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec B} bzw.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec j} sowie
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\phi} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec A}
zusammengefasst werden können und dass sich die relativistische Invarianz der Maxwellschen Elektrodynamik daraus ergibt, siehe dazu Elektrodynamik.
Wenn man die Bedingung der Stationarität aufgibt, muss auf der linken Seite der obigen Gleichung bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_i} zu den Raumkoordinaten das Zeitargument hinzugefügt werden, während auf der rechten Seite in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j_i'} die sog. „retardierte Zeit“ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t':=t-\tfrac{|\vec r -\vec r^{\,'}|}{c}} zu ergänzen ist. Es wird dabei wie zuvor über die drei Raumkoordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec r^{\,'}} integriert. Schließlich ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} die Lichtgeschwindigkeit im Vakuum.
Anwendung in der Kontinuumsmechanik
In der Kontinuumsmechanik wird das Lemma auf Tensoren angewendet, was z. B. für die Aufstellung der Kompatibilitätsbedingungen gebraucht wird. Ausgangspunkt ist das Lemma in der Formulierung:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{rot}\vec{u} =\hat{e}_k\times\frac{\partial\vec{u}}{\partial x_k} =\vec{0} \quad\rightarrow\quad \exists\varphi\colon\vec{u}=\operatorname{grad}\varphi }
|
(I)
| |
Der Operator „grad“ bildet den Gradient, die Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat{e}_{1,2,3}} sind die Standardbasis des kartesischen Koordinatensystems mit Koordinaten und es wurde die einsteinsche Summenkonvention angewendet, dergemäß über in einem Produkt doppelt vorkommende Indizes, hier k, von eins bis drei zu summieren ist, was auch im Folgenden praktiziert werden soll.
Gegeben sei nun ein Tensorfeld , dessen Zeilenvektoren mit dem dyadischen Produkt „⊗“ zum Tensor zusammengefügt werden. Jeder Tensor zweiter Stufe kann in dieser Form dargestellt werden. Die Rotation des Tensors verschwinde
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \operatorname{rot}(\mathbf{T}):=\nabla\times(\mathbf{T}^\top) =&\hat{e}_k\times\frac{\partial}{\partial x_k}(\vec{t}_{i}\otimes\hat{e}_i) =\left(\hat{e}_k\times\frac{\partial\vec{t}_{i}}{\partial x_k}\right)\otimes\hat{e}_i =\mathbf{0} \\& \rightarrow\quad \hat{e}_k\times\frac{\partial\vec{t}_{i}}{\partial x_k}=\vec{0}\,,\quad i=1,2,3 \end{align}}
so dass also jeder Zeilenvektor rotationsfrei ist. Dann gibt es für jeden Zeilenvektor ein Skalarfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_i} , dessen Gradient er ist:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{t}_{i}=\operatorname{grad}u_i \quad\rightarrow\quad \mathbf{T}=\hat{e}_i\otimes\vec{t}_i =\hat{e}_i\otimes\operatorname{grad}u_i =\operatorname{grad}\vec{u}\,, }
denn der Gradient des Vektors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec u:=u_i\hat{e}_i} bildet sich gemäß:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{grad}\vec{u} :=\frac{\partial u_i}{\partial x_k}\hat{e}_i\otimes\hat{e}_k =\hat{e}_i\otimes\frac{\partial u_i}{\partial x_k}\hat{e}_k =\hat{e}_i\otimes\operatorname{grad}u_i\,. }
Damit gilt die zweite Form des Lemmas:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{rot}(\mathbf{T}):=\nabla\times(\mathbf{T}^\top)=\mathbf{0} \quad\rightarrow\quad \exists\vec{u}\colon\mathbf{T} =\operatorname{grad}\vec{u}}
|
(II)
| |
Wenn zusätzlich die Spur des Tensors verschwindet, dann ist das Vektorfeld divergenzfrei:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Sp}(\mathbf{T}) =\operatorname{Sp}(\hat{e}_i\otimes\operatorname{grad}u_i) =\hat{e}_i\cdot\frac{\partial u_i}{\partial x_k}\hat{e}_k =\frac{\partial u_i}{\partial x_i} =\operatorname{div}\vec{u} =0\,. }
In diesem Fall berechnet sich mit dem Einheitstensor 1 = êj ⊗ êj:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \operatorname{rot}(\mathbf1\times\vec{u}) =& \hat{e}_k\times\frac{\partial}{\partial x_k}[(\hat{e}_j\otimes\hat{e}_j)\times u_i\hat{e}_i]^\top = \frac{\partial u_i}{\partial x_k} [\hat{e}_k\times(\hat{e}_j\times\hat{e}_i)]\otimes\hat{e}_j \\=& \frac{\partial u_i}{\partial x_k} (\delta_{ik}\hat{e}_j -\delta_{jk}\hat{e}_i)\otimes\hat{e}_j = \frac{\partial u_i}{\partial x_i}\hat{e}_j\otimes\hat{e}_j -\frac{\partial u_i}{\partial x_j}\hat{e}_i\otimes\hat{e}_j \\=&-\operatorname{grad}\vec{u} \end{align}}
und der Tensor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf1\times\vec{u}} ist schiefsymmetrisch:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\mathbf1\times\vec{u})^\top = (\hat{e}_i\otimes\hat{e}_i\times u_j\hat{e}_j)^\top = \epsilon_{ijk} u_j\hat{e}_k\otimes\hat{e}_i = -u_j\hat{e}_k\otimes\hat{e}_k\times\hat{e}_j = -\mathbf1\times\vec{u} }
Darin ist ϵijk = (êi × êj) · êk das Permutationssymbol. Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{W}=-\mathbf1\times\vec{u}} folgt die dritte Form des Lemmas:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{rot}(\mathbf{T}) =\mathbf{0}\;\text{und}\;\operatorname{Sp}(\mathbf{T}) =0 \;\rightarrow\quad \exists\mathbf{W}\colon\mathbf{T}=\operatorname{rot}\mathbf{W} \;\text{mit}\; \mathbf{W}=-\mathbf{W}^\top}
|
(III)
| |
oder mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{W}=\mathbf1\times\vec{u}} und dem Nabla-Operator
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla\times(\mathbf{T}^\top) =\mathbf{0}\;\text{und}\;\operatorname{Sp}(\mathbf{T}) =0 \;\rightarrow\quad \exists\mathbf{W}\colon\mathbf{T}=\nabla\times\mathbf{W} \;\text{mit}\; \mathbf{W}=-\mathbf{W}^\top}
|
(III)
| |
Literatur
- Otto Forster: Analysis. Band 3: Integralrechnung im ℝn mit Anwendungen. 4. Auflage. Vieweg + Teubner, Braunschweig u. a. 2007, ISBN 978-3-528-37252-1.
- John M. Lee: Introduction to Smooth Manifolds (= Graduate Texts in Mathematics 218). Springer-Verlag, New York NY u. a. 2003, ISBN 0-387-95448-1.
- C. Truesdell: Festkörpermechanik II in S. Flügge (Hrsg.): Handbuch der Physik, Band VIa/2. Springer-Verlag, 1972, ISBN 3-540-05535-5, ISBN 0-387-05535-5.