Lemma von Itō

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Itō-Formel)

Das Lemma von Itō (auch Itō-Formel), benannt nach dem japanischen Mathematiker Itō Kiyoshi, ist eine zentrale Aussage in der stochastischen Analysis. In seiner einfachsten Form ist es eine Integraldarstellung für stochastische Prozesse, die Funktionen eines Wiener-Prozesses sind. Es entspricht damit der Kettenregel bzw. Substitutionsregel der klassischen Differential- und Integralrechnung.

Version für Wiener-Prozesse

Sei ein (Standard-)Wiener-Prozess und eine zweimal stetig differenzierbare Funktion. Dann gilt

Dabei ist das erste Integral als Itō-Integral und das zweite Integral als ein gewöhnliches Riemann-Integral (über die stetigen Pfade des Integranden) zu verstehen.

Für den durch für definierten Prozess lautet diese Darstellung in Differentialschreibweise

Version für Itō-Prozesse

Ein stochastischer Prozess heißt Itō-Prozess, falls

für zwei stochastische Prozesse , gilt (genaueres dazu unter stochastische Integration). In Differentialschreibweise:

Ist eine in der ersten Komponente einmal und in der zweiten zweimal stetig differenzierbare Funktion, so ist auch der durch definierte Prozess ein Itō-Prozess, und es gilt[1]

Hierbei bezeichnen und die partiellen Ableitungen der Funktion nach der ersten bzw. zweiten Variablen. Die zweite Darstellung folgt aus der ersten durch Einsetzen von und Zusammenfassen der - und -Terme.

Mehrdimensionale Version

Die Formel lässt sich auf Itō-Prozesse verallgemeinern. Sei in in der ersten und in den restlichen Variablen. Definiere dann gilt

Version für Semimartingale

Sei ein -wertiges Semimartingal und sei . Dann ist wieder ein Semimartingal und es gilt

Hierbei ist der linksseitige Grenzwert und der zugehörige Sprungprozess. Mit wird die quadratische Kovariation der stetigen Anteile der Komponenten und bezeichnet. Falls ein stetiges Semimartingal ist, verschwindet die letzte Summe in der Formel und es gilt .

Beispiele

  • Für gilt .
eine Lösung der stochastischen Differentialgleichung von Black und Scholes
ist.
Hierzu wählt man , also .
Dann ergibt das Lemma mit :
  • Ist ein -dimensionaler Wiener-Prozess und zweimal stetig differenzierbar, dann gilt für
,
wobei den Gradienten und den Laplace-Operator von bezeichnen.

Siehe auch

Literatur

  • Philip E. Protter: Stochastic Integration and Differential Equations (2nd edition), Springer, 2004, ISBN 3-540-00313-4.

Einzelnachweise

  1. Hui-Hsiung Kuo: Introduction to Stochastic Integration. Springer, 2006, ISBN 978-0387-28720-1, S. 103 (eingeschränkte Vorschau in der Google-Buchsuche).