K-Theorie von Banachalgebren

aus Wikipedia, der freien Enzyklopädie

Die K-Theorie von Banachalgebren ist ein Konzept aus dem mathematischen Gebiet der Funktionalanalysis. Sie liefert Invarianten für Banachalgebren, das sind in der Funktionalanalysis untersuchte Algebren, die einige bekannte Funktionenräume und Operatorenalgebren wie zum Beispiel Räume stetiger oder integrierbarer Funktionen oder Algebren stetiger linearer Operatoren auf Banachräumen anhand wesentlicher gemeinsamer Eigenschaften verallgemeinern.

Sie verallgemeinert die topologische K-Theorie, die sich mit dem Studium von Vektorbündeln auf topologischen Räumen befasst, auf allgemeine Banachalgebren, wobei die C*-Algebren eine wichtige Rolle spielen. Die topologische K-Theorie kompakter Räume Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} kann als K-Theorie der Banachalgebren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C(X)} der stetigen Funktionen umformuliert und dann auf beliebige Banachalgebren übertragen werden, sogar auf das Einselement der Algebren kann man verzichten. Da die Zuordnung ein kontravarianter Funktor von der Kategorie der kompakten Hausdorffräume in die Kategorie der Banachalgebren ist und da die topologische K-Theorie ebenfalls kontravariant ist, erhalten wir insgesamt einen kovarianten Funktor von der Kategorie der Banachalgebren in die Kategorie der abelschen Gruppen.[1]

Da hier auch nicht-kommutative Algebren auftreten können, spricht man von nicht-kommutativer Topologie. Die K-Theorie ist ein wichtiger Untersuchungsgegenstand in der Theorie der C*-Algebren. Im Folgenden sei eine -Banachalgebra, gehe aus durch Adjunktion eines Einselementes hervor.

K0 von Banachalgebren

Die Vektorbündel der topologischen K-Theorie entsprechen auf der algebraischen Seite den endlich erzeugten, projektiven Moduln und diese sind direkte Summanden in freien Moduln , können also durch Idempotente einer hinreichend großen Matrix-Algebra über beschrieben werden. Für die Idempotenten gibt es verschiedene, geeignete Äquivalenzbegriffe, die alle zusammenfallen, wenn man in den induktiven Limes geht, wobei äquivalente Idempotente zu stabil-isomorphen, projektiven Moduln gehören. Eine mögliche Definition ist, dass zwei Idempotente und äquivalent heißen, wenn es ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\in \N} gibt, so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p,q\in M_n(A)} und Elemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x,y\in M_n(A)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=xy, q= yx} existieren. Die Äquivalenzklasse von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} werde mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [p]} bezeichnet. Hat man zwei Idempotente und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q} , so kann man etwa Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q} durch eine äquivalente Idempotente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q'} ersetzen, so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle pq' = 0} , dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p+q'} wieder eine Idempotente. Setzt man , so ist dadurch eine wohldefinierte Halbgruppenverknüpfung auf der Menge der Äquivalenzklassen von Idempotenten aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\infty(A)} gegeben. Hiervon könnte man wieder die zugehörige Grothendieck-Gruppe bilden, aber zur Definition der Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_0(A)} nimmt man eine kleine technische Veränderung vor, um auch Algebren ohne Einselement, etwa Ideale in Banachalgebren, adäquat behandeln zu können. Man definiert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_0(A)} als Untergruppe der Grothendieck-Gruppe von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V(A^+)} , und zwar als Menge aller Differenzen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [p]-[q]} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p, q\in M_\infty(A^+)} idempotent sind, so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p-q \in M_\infty(A)} .

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J\subset A} ein zweiseitiges, abgeschlossenes Ideal, so erhält man aus der kurzen, exakten Sequenz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 \rightarrow J \rightarrow A \rightarrow A/J \rightarrow 0}

eine exakte Sequenz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_0(J) \rightarrow K_0(A) \rightarrow K_0(A/J)} ,

die sich im Allgemeinen weder nach links noch nach rechts exakt mit 0 fortsetzen lässt.

Die Definition ist so angelegt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_0(C(X)) = K^0(X)} für kompakte Räume gilt (Satz von Serre und Swan). Im Falle von C*-Algebren kann man bei obiger Konstruktion die Idempotenten durch Orthogonalprojektionen, das heißt durch selbstadjungierte Idempotente, ersetzen und erhält dasselbe Ergebnis, da jede Idempotente zu einer Projektion äquivalent ist. Als wichtige Anwendung lassen sich mittels K0 die AF-C*-Algebren klassifizieren.

K1 von Banachalgebren

Zur Definition von definieren wir Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle GL_n(A)} als Menge aller invertierbaren Matrizen aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_n(A^+)} , deren Bild in der Quotientenalgebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_n(A^+)/M_n(A) \cong M_n(\Complex)} gleich der Einheitsmatrix ist. Mittels

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle GL_n(A) \ni x \mapsto \begin{pmatrix} x&0 \\ 0&1\end{pmatrix} \in GL_{n+1}(A)}

fassen wir Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle GL_n(A)} als Untergruppe von auf und versehen den so entstehenden induktiven Limes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle GL_\infty(A) := \mathrm{ind}_{n\to \infty}GL_n(A)} mit der finalen Topologie. Die Zusammenhangskomponente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle GL_\infty(A)_0} des Einselements ist ein Normalteiler und man definiert

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_1(A) := GL_\infty(A)/GL_\infty(A)_0 = \mathrm{ind}_{n\to \infty}GL_n(A)/GL_n(A)_0} .

Trotz der Nicht-Kommutativität der Matrizenalgebren erweist sich die so definierte Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_1(A)} als kommutativ. Während in der algebraischen K-Theorie zur Definition der K1-Gruppe die Kommutatorgruppe herausdividiert wird (siehe Abelisierung), verwendet man in der topologischen K-Theorie für Banachalgebren die Zusammenhangskomponente des Einselements. Im Falle von C*-Algebren kann man in obiger Konstruktion die invertierbaren Elemente durch unitäre Elemente ersetzen und erhält dasselbe Ergebnis.

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J\subset A} ein zweiseitiges, abgeschlossenes Ideal, so erhält man aus der kurzen, exakten Sequenz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 \rightarrow J \rightarrow A \rightarrow A/J \rightarrow 0}

eine exakte Sequenz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_1(J) \rightarrow K_1(A) \rightarrow K_1(A/J)} ,

die sich im Allgemeinen weder nach links noch nach rechts exakt mit 0 fortsetzen lässt.

Wieder ist die Definition so angelegt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_1(C(X)) = K^1(X)} für kompakte Räume Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} gilt. Bezeichnet man mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle SA} die Banachalgebra aller stetigen Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R\rightarrow A} , die im Unendlichen verschwinden, versehen mit der Supremumsnorm, so kann man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_1(A)\cong K_0(SA)} zeigen. Man nennt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle SA} die Suspension von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} ; es handelt sich um die Banachachalgebrenversion der Suspension bzw. reduzierten Einhängung topologischer Räume. Mittels Iteration der Suspension könnte man höhere K-Gruppen definieren, etwa Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_n(A) := K(S^nA)} , aber wegen der auch hier gültigen Bott-Periodizität ist das nicht erforderlich.

Zyklische Sequenz

Wie in der topologischen K-Theorie kann man eine Index-Abbildung und einen Bott-Isomorphismus konstruieren, so dass sich obige exakte Sequenzen zu folgender zyklischen exakten Sequenz zusammenfügen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{ccccc} K_0(J) & \rightarrow & K_0(A) & \rightarrow & K_0(A/J)\\ \uparrow & & & &\downarrow\\ K_1(A/J) & \leftarrow & K_1(A) & \leftarrow & K_1(J)\\ \end{array} }

Diese Sequenz ist sehr nützlich bei der Berechnung von K-Gruppen. Sind einige Gruppen der Sequenz bekannt, so lässt dies wegen der Exaktheit Rückschlüsse auf die noch unbekannten zu.

Weitere Eigenschaften

Funktorialität

Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi: A\rightarrow B} ein stetiger Homomorphismus zwischen Banachalgebren. Dieser definiert Homomorphismen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi_n: M_n(A)\rightarrow M_n(B) } , die mit obigen Konstruktionen der K-Gruppen verträglich sind und so zu Gruppenhomomorphismen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_0(\varphi): K_0(A) \rightarrow K_0(B)} und führen. Dadurch werden und zu kovarianten Funktoren zwischen der Kategorie der Banachalgebren und der Kategorie der abelschen Gruppen.

Homotopieinvarianz

Zwei stetige Homomorphismen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi, \psi: A\rightarrow B} zwischen Banachalgebren heißen homotop, wenn es eine Familie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\varphi_t)_{t\in [0,1]}} von Homomorphismen gibt, so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t\mapsto\varphi_t(a)} für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\in A} stetig ist und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi_0 = \varphi, \varphi_1 = \psi} gilt. Homotope Homomorphismen induzieren dieselben Gruppenhomomorphismen zwischen den K-Gruppen.

Stabilität

Ist eine Banachalgebra, so gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_i(M_n(A)) \cong K_i(A)} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i=0,1} und alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\in \N} . Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=\mathrm{ind}_{j\in J}A_j} ein induktiver Limes in der Kategorie der Banachalgebren, so gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_i(\mathrm{ind}_{j\in J}A_j) \cong \mathrm{ind}_{j\in J}K_i(A_j),\quad i=0,1} .

Die Verträglichkeit mit der Bildung des induktiven Limes ergibt sich direkt aus den Konstruktionen der K-Gruppen mittels induktiver Limiten.

Speziell für C*-Algebren ist und der induktive Limes der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_n(A)} in der Kategorie der C*-Algreben ist isomorph zum Tensorprodukt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\otimes K} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} die C*-Algebra der kompakten Operatoren über einem separablen Hilbertraum ist. Damit gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_i(A\otimes K) \cong K_i(A)} für .

Literatur

  • Jacek Brodzki: An Introduction to K-theory and Cyclic Cohomology. arxiv:funct-an/9606001.
  • Bruce Blackadar: K-Theory for Operator Algebras. Springer Verlag, 1986, ISBN 3-540-96391-X.

Weblinks

Quellen

  1. Blackadar: K-Theory for Operator Algebras. Springer Verlag, 1986, ISBN 3-540-96391-X.