Koinzidenzindex

aus Wikipedia, der freien Enzyklopädie

Den Koinzidenzindex (engl.: Index of coincidence, Abkürzung: IC) erhält man durch statistische Auswertung der Häufigkeit von Einzelzeichen (also meist der einzelnen Buchstaben) eines oder auch zweier Texte. Mit seiner Hilfe können verschlüsselte oder unverständliche Texte auf sprachliche Eigenschaften untersucht werden. Er wird speziell bei der Entzifferung historischer Schriftdokumente und allgemein in der Kryptanalyse benutzt. Die Methode wurde vom amerikanischen Kryptoanalytiker William F. Friedman für kryptologische Zwecke entwickelt und im Jahr 1922 in seiner bahnbrechenden Arbeit The index of coincidence and its applications in cryptography (deutsch: „Der Koinzidenzindex und seine Anwendungen in der Kryptographie“) publiziert.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{IC} = \frac{\sum_{i=A}^{Z}n_i(n_i -1)}{N(N-1)}}

In seiner grundlegenden Form wird der Koinzidenzindex ermittelt, indem man die Einzelanzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_i} der unterschiedlichen Einzelzeichen eines Geheimtextes zählt, also beispielsweise wie oft der Buchstabe A auftritt, wie oft B, und so weiter. Diese werden nach oben angegebener Formel mit den um 1 verminderten Einzelanzahlen multipliziert und für alle Buchstaben (beispielsweise von A bis Z) aufsummiert. Die Summe wird schließlich dividiert durch die Gesamtanzahl N der Buchstaben des Textes (also der Textlänge) sowie die um 1 verminderte Textlänge. Das Ergebnis ist der Friedmansche Koinzidenzindex IC.

Natürliche Sprachen haben ihren jeweils typischen Koinzidenzindex.

Definitionen

In allgemeiner Form sind unter dem Begriff Koinzidenzindex vier Funktionen zusammengefasst, die meist mit den griechischen Buchstaben Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa, \chi, \psi\ } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi\ } (Kappa, Chi, Psi und Phi) bezeichnet werden. Oft wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi\ } als der Koinzidenzindex bezeichnet, wobei vom historischen Standpunkt wohl eher Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa\, } das Anrecht auf diesen Namen hat.

Gegeben seien zwei gleich lange Texte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T= x_1x_2\ldots x_k, T'=x'_1x'_2\ldots x'_k} über demselben Alphabet. Dann ist das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa\, } der beiden Texte

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa (T,T') = \sum_{i=1}^k \frac{\delta (x_i,x'_i)}{k},}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta\, } das Kronecker-Delta bezeichnet (also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta (x_i,x'_i) = 1} , falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i=x'_i} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} sonst).

Damit ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa\, } eine Zahl zwischen 0 und 1, wobei 1 genau dann auftritt, wenn beide Texte gleich sind. Werden die Zeichen zufällig mit gleicher Wahrscheinlichkeit aus einem Alphabet mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Zeichen gewählt, so ist der Erwartungswert für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa\, } gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{1}{n}} , da jeder Summand mit Wahrscheinlichkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{1}{n}} gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{1}{k}} ist (und sonst gleich 0).

Da man in der Kryptanalyse oft aus kurzen Texten viel Information herauspressen möchte, ist die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi\, } , die, wie die folgenden Funktionen, auf Friedmans Mitarbeiter Solomon Kullback (1935) zurückgeht, gelegentlich aussagekräftiger:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi(T,T') = \sum_{i=1}^k \sum_{j=1}^k \frac{\delta (x_i,x'_j)}{k^2} = \sum_{\ell=1}^n \frac{m_\ell \cdot m'_\ell}{k^2},}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_\ell, m'_\ell} angibt, wie oft das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell} -te Zeichen des Alphabets im Text Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T'} auftritt. Die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi\, } hängt also allein von den Buchstabenhäufigkeiten der beiden Texte ab. Nun ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi(T) = \chi(T,T).\, }

Während Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi\, } angewandt auf zwei Texte aus zufälligen gleichverteilten Zeichen wie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa\, } den Erwartungswert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{1}{n}} hat, ist das für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi\, } nicht mehr der Fall, da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta(x_i,x_i)} immer gleich 1 ist. Deshalb schließt man sinnvollerweise bei der Summation die Zeichen an derselben Position aus und definiert

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi(T) = \sum_{1\le i\neq j\le k} \frac{\delta (x_i,x_j)}{k(k-1)} = \sum_{\ell=1}^n \frac{m_\ell (m_\ell -1)}{k(k-1)}.}

Ebenso wie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi\, } kann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi\ } allein aus den Buchstabenhäufigkeiten der beiden Texte berechnet werden, jedoch ist für einen Text aus Zufallszeichen der Erwartungswert für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi\ } gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{1}{n}} , während er für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi\, } größer ist (nämlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{n+k-1}{nk}} ). Insbesondere für kurze Texte ist der Unterschied markant.

Bedeutung

Geht man von Texten aus mehr oder weniger gleichverteilten Zufallszeichen über zu Texten, die in einer bestimmten natürlichen Sprache verfasst sind, so ändert sich der Wert des Koinzidenzindexes erheblich. Eine Faustregel besagt, dass er etwa doppelt so groß wird. Dies gilt nicht nur für Klartexte, sondern gleichermaßen auch für monoalphabetisch verschlüsselte Geheimtexte, da sich bei diesen Verfahren die Häufigkeiten der einzelnen Buchstaben nicht ändern. Das heißt, der Koinzidenzindex ist invariant gegenüber diesen Arten der Verschlüsselung.

Nimmt man beispielsweise die 26 Buchstaben unseres gewohnten lateinischen Alphabets (Umlaute werden durch ae, oe, ue ersetzt, ß durch Doppel-s oder sz, Leerzeichen und Satzzeichen werden ignoriert), so liegt der Wert für deutschsprachige Texte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa, \chi\, } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi\, } bei rund 0,078 oder 7,8 %, während man für englischsprachige Texte etwa 6,6 % erhält. Dies ist in beiden Fällen, und auch für alle anderen Sprachen, deutlich höher als im Fall der Gleichverteilung der Buchstaben. Treten sämtliche Buchstaben des Alphabets gleich häufig auf, wie es für „zufällig“ generierte Buchstabenfolgen („Zufallstexte“) oder für „stark verschlüsselte“ Geheimtexte der Fall ist, dann ergibt sich ein Wert von etwa 1/26, also rund 3,8 %. Der höhere Wert des Koinzidenzindexes für die deutsche Sprache gegenüber der englischen Sprache spiegelt vor allem die größere Häufigkeit des dominanten Buchstabens E im Deutschen (etwa 18 %) gegenüber dem Englischen (etwa 12 %) wider.

Der Erwartungswert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_S} des Koinzidenzindexes für eine Sprache Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} lässt sich aus den Buchstabenhäufigkeiten nach der Formel

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_S = \sum_{i=1}^n p_i^2}

berechnen, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_i} die Wahrscheinlichkeit des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -ten Zeichens des Alphabets in Texten der entsprechenden Sprache angibt.

In verwandten Sprachen ähneln sich oft die Erwartungswerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_S} , so dass bei unbekannten Texten anhand des Koinzidenzindex Vermutungen auf den zugehörigen Sprachraum angestellt werden können.

Anwendung zur Kryptanalyse

Die wesentliche Eigenschaft ist hier, dass sich bei einer einfachen monoalphabetischen Substitutionsverschlüsselung weder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa, \chi, \psi\, } noch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi\, } ändern, sofern die beteiligten Texte auf die gleiche Art verschlüsselt sind. Eine sprachliche Zuordnung hinreichend langer Texte wird somit allein auf statistischer Basis möglich.

Bei einer periodischen polyalphabetischen Substitutionsverschlüsselung ist der Koinzidenzindex noch wertvoller, denn die Schlüssellänge der Verschlüsselung kann mit folgender Formel abgeschätzt werden (Friedman-Test). Für die Sprache Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} lautet die Formel für die Schlüssellänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h \approx \frac{(E_S - \frac1n)k}{(k-1)\phi(T) - k\frac1n + E_S}.}

Diese Formel lässt sich theoretisch herleiten unter der Annahme, dass alle Schlüsselzeichen verschieden sind. Der Wert ist also vor allem bei mit kurzen Schlüsseln verschlüsselten kurzen Texten aufschlussreich, insbesondere in Kombination mit dem Kasiski-Test. Hat man mit längeren Schlüsselwörtern verschlüsselte längere Texte zur Verfügung, so ist das folgende Vorgehen präziser.

Entfernt man vom Text Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} einmal die ersten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} Zeichen und einmal die letzten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} Zeichen, so erhält man zwei Texte, deren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa\, } bestimmt werden kann. Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} ein Vielfaches der Schlüssellänge, so sollte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa \approx E_S} sein, da die verglichenen Einzelzeichen mit demselben Schlüssel verschlüsselt sind. Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} jedoch kein Vielfaches der Schlüssellänge, so ist mit einem deutlich niedrigeren Wert für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa\, } zu rechnen, da die verglichenen Zeichen nur selten gleich verschlüsselt sind. Wiederholte Sequenzen im Schlüsselwort, mit denen man den Kasiski-Test und den Friedman-Test überlisten kann, beeinflussen die Ergebnisse hier nur ansatzweise und sollten in der Regel erkannt werden.

Auch bei nicht periodischen polyalphabetischen Verschlüsselungen lassen sich diese Methoden gewinnbringend nutzen. Insbesondere erkennt man bei zwei mit dem gleichen One-Time-Pad verschlüsselten Texten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T, T'\, } durch Berechnung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa(T,T')\, } sofort diese kryptographische Sünde und kann zum Beispiel durch die Methode des wahrscheinlichen Wortes angewandt auf einen der Texte versuchen, Klartextsequenzen im anderen Text zu erzeugen.

Der Koinzidenzindex eignet sich also für sogenannte Ciphertext-only-Angriffe (wo über den Inhalt des verschlüsselten Textes nichts bekannt sein muss) auf Substitutionsverschlüsselungen, wodurch diese Verfahren (natürlich außer einem korrekt angewendeten One-Time Pad) als ausgesprochen unsicher angesehen werden müssen.

Literatur

  • Friedrich L. Bauer: Entzifferte Geheimnisse. Methoden und Maximen der Kryptologie. 3., überarbeitete und erweiterte Auflage. Springer, Berlin u. a. 2000, ISBN 3-540-67931-6.
  • William F. Friedman: The index of coincidence and its applications in cryptology. Riverbank Laboratories – Department of Ciphers, Geneva IL 1922 (Nachdruck: Aegean Park Press, Laguna Hills CA 1987, ISBN 0-89412-137-5 [A Cryptographic Series, 49]).

Weblinks