Methode der Charakteristiken

aus Wikipedia, der freien Enzyklopädie

Die Methode der Charakteristiken ist eine Methode zur Lösung partieller Differentialgleichungen (PDGL/PDE), die typischerweise erster Ordnung und quasilinear sind, also Gleichungen vom Typ

für eine Funktion mit der Anfangsbedingung . (Dabei heißt eine Gleichung quasilinear, falls sie in der höchsten Ableitung linear ist).

Die grundlegende Idee besteht darin, die PDE durch eine geeignete Koordinatentransformation auf ein System gewöhnlicher Differentialgleichungen auf bestimmten Hyperflächen, sogenannten Charakteristiken, zurückzuführen. Die PDE kann dann als Anfangswertproblem in dem neuen System mit Anfangswerten auf den die Charakteristik schneidenden Hyperflächen gelöst werden. Störungen breiten sich längs der Charakteristiken aus. Die Methode kann auch allgemein auf hyperbolische partielle Differentialgleichungen angewandt werden, deren Prototyp die Wellengleichung ist, und auf einige weitere PDEs höherer Ordnung.

Charakteristiken spielen eine Rolle in der qualitativen Diskussion der Lösung bestimmter PDE und in der Frage, wann Anfangswertprobleme für diese PDE korrekt gestellt sind.

Die Methode geht auf Joseph-Louis Lagrange zurück (1779, quasilineare partielle Differentialgleichungen erster Ordnung). Sie wurde 1784 von Gaspard Monge geometrisch begründet, was Johann Friedrich Pfaff 1815 und Augustin-Louis Cauchy 1819 auf mehr als zwei Dimensionen erweiterten.[1]

Idee

Um die partielle Differentialgleichung in ein System von gewöhnlichen Differentialgleichungen zu überführen, werden die Koordinaten und über zwei neue Koordinaten und parametrisiert, das heißt man hat Gleichungen und . Zunächst wird die gesuchte Funktion mittels Kettenregel nach abgeleitet:

Die obige quasilineare PDE wird mit den „Charakteristikengleichungen“

,

zu

Also ein System gewöhnlicher Differentialgleichungen in den neuen Koordinaten, wenn man auf der rechten Seite noch die Parametrisierungen und einsetzt.

Geometrische Interpretation

Geometrisch kann das Vorgehen wie folgt beschrieben werden.[2] Die Lösungsfunktion führt zu Flächengleichungen im Raum der Koordinaten (Integralflächen). Eine solche Integralfläche hat den Normalenvektor:

und die PDE besagt geometrisch, dass das Vektorfeld der Charakteristiken auf tangential zur Integralfläche ist, denn das Skalarprodukt des Vektorfelds mit dem Normalenvektor verschwindet:

.

Die Lösungen der PDE sind Integralkurven des Vektorfeldes (im Teilraum der x,t sind das die Charakteristiken). In einer Parameterdarstellung der Integralkurve mit Parameter ergeben sich die Gleichungen:

für die Charakteristiken oder (Lagrange-Charpit-Gleichungen):

Beispiele

Einfache Transportgleichung

Gegeben sei eine einfache Transportgleichung, ein einfaches Beispiel eines Typs von PDEs 1. Ordnung, die einen zeitlich-räumlichen Fluss beschreiben (zum Beispiel Advektion, Transport von Chemikalien in einer Flüssigkeit):

mit der Anfangsbedingung , und der reellen Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c\in\mathbb{R}} . Für die partiellen Ableitungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} wurde hier die übliche Indexschreibweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_t} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_x} verwendet. Ableitung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} und Koeffizientenvergleich liefert ein System von gewöhnlichen Differentialgleichungen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{ \mathrm{d} t}{\mathrm{d} \tau} = P(x,t,u) = 1}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{ \mathrm{d} x}{\mathrm{d} \tau} = Q(x,t, u) = c}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{ \mathrm{d} u}{\mathrm{d} \tau} = R (x,t, u)= 0}

sowie die Anfangsbedingungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t(\tau=0)=0 \, ,\, x(\tau=0)=\xi \, ,\,u(\tau=0)=f(\xi) } .

Da die Gleichungen hier komplett voneinander entkoppelt sind, ist die Lösung sehr einfach:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t=\tau}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=c\tau+\xi}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u=f(\xi)} .

Hieraus folgt sofort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi=x-c t } und damit die Lösung der Transportgleichung in den alten Koordinaten:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(x,t)=f(x-ct)} .

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=c t + \xi} sind die Gleichungen der Charakteristiken. Der Wert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u} auf der x-Achse bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t=0} legt den Wert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u} längs der Charakteristiken-Geraden mit Steigung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} für alle Zeiten fest, was sich mathematisch in der Form der Lösung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(x,t)=f(x-ct)=f(\xi)} ausdrückt. Längs der Charakteristik ändert sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u} nicht, was gerade durch die Differentialgleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac { \mathrm{d} u}{\mathrm{d} \tau}=\frac { \mathrm{d} u}{\mathrm{d} t} =0} längs der Charakteristik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=c t +\xi} ausgedrückt wird.

Verallgemeinerte Transportgleichung

Man betrachte eine allgemeinere Transportgleichung mit variablen Koeffizienten:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P (x,t) \frac{ \partial u}{\partial t} + Q (x,t) \frac{ \partial u}{\partial x} + R (x,t) u=0}

mit der Anfangsbedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u (x,0)= f(x)} .

Es wird eine neue Variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} eingeführt, so dass die PDE sich auf Kurven Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x(\tau), t (\tau)} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau>0} auf eine gewöhnliche Differentialgleichung reduziert wird. Dazu wird

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac {\mathrm{d} t}{\mathrm{d} \tau} = P (x (\tau), t (\tau))}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac {\mathrm{d} x}{\mathrm{d} \tau} = Q (x (\tau), t (\tau))}

gewählt (die Charakteristiken-Gleichungen), so dass:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac {\mathrm{d} u}{\mathrm{d} \tau} = \frac {\partial u}{\partial x} \frac {\mathrm{d} x}{\mathrm{d} \tau} + \frac {\partial u}{\partial t} \frac {\mathrm{d} t}{\mathrm{d} \tau} = Q (x,t) \frac{ \partial u}{\partial x} + P (x,t) \frac{ \partial u}{\partial t} =- R (x,t) u}

Die PDE wird dann eine gewöhnliche Differentialgleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac {\mathrm{d} u}{\mathrm{d} \tau} + R (x (\tau), t (\tau)) u=0}

Die zweite Koordinate der Koordinatentransformation ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi = x (\tau=0)} und die Funktionswerte u längs der Kurven Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau >0} sind durch die Anfangswerte in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi} vorgegeben.

Betrachtet man zum Beispiel die Gleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_t+c \, u_x+a \, u=0}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u (x, 0)=u (x_0, 0)= f(x_0)=K} , so ergeben sich mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P= 1, Q= c, R=a,} wieder die Charakteristiken Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x-ct=x_0} wie in Beispiel 1, aus der dritten Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_t+au=0} ergeben sich aber Lösungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u (x,t)=f(x-ct)\exp {(-at)}=f(x_0)\exp {(-at)}= K \exp {(-at)}} . Man hat hier also keine konstanten Lösungen längs der Charakteristik, wie im vorangegangenen Beispiel der Fall war, sondern ein exponentielles Abklingen mit der Zeit.

Als weiteres Beispiel werde

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_t+x \, u_x=0}

betrachtet, mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(x,0)=f(x)} . Hier ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P= 1, Q= x, R=0,} und man hat keine Geraden als Charakteristiken, sondern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=x_0 \exp {(t)}} . Längs der Charakteristiken ist der Funktionswert konstant, so dass sich als Lösung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(x,t)=f(x_0)=f(x \, \exp {(-t)})}

ergibt.

Burgersgleichung

Ein weiteres Beispiel sind in der Physik auftretende Erhaltungssätze der Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_t + F_x (u (x,t))=0} ,

zum Beispiel die Burgersgleichung im Fall verschwindender Viskosität (nicht-viskose Burgersgleichung):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F= \frac {1}{2} u^2}

und damit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_t +u \, u_x=0}

mit der Anfangsbedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u (x, 0) =f(x)} . Hier ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P= 1, Q= u, R=0} , die Gleichung ist nichtlinear. Die Charakteristiken sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=x_0 +u \, t = x_0 + f (x_0) \, t} , das heißt Geraden, die aber eine variable Steigung haben, die vom Funktionswert längs der Charakteristiken abhängt. Die Lösung ist formal ähnlich wie im Beispiel der einfachen Transportgleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u (x,t)= f (x-ut) =f(x_0)} und längs der Charakteristik konstant, dort gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_t=0} .

Die Burgersgleichung wird oft als Modellsystem nichtlinearer hydrodynamischer Gleichungen benutzt. Das Neue ist in diesem Fall, dass sich die Charakteristiken wegen der variablen Steigung schneiden können. Am Schnittpunkt wird die Lösung mehrdeutig und eine eindeutige Lösung des Problems existiert nicht mehr. Es bildet sich eine Unstetigkeit, für in Richtung fortschreitender Zeit konvergierende Charakteristiken eine Stoßwellenfront, und bei divergierenden Charakteristiken eine Verdünnungsfront. Man kann den Zusammenbruch klassischer Lösungen aber durch Betrachtung schwacher Lösungen (Distributionen) umgehen, wobei zur Auswahl der physikalisch korrekten Lösung Entropie-Bedingungen hinzugezogen werden. Im Fall der Burgers-Gleichung hat die Stoßwelle eine Geschwindigkeit, die dem Mittelwert aus den Funktionswerten u rechts und links der Stoßfront entspricht.

Wellengleichung

Die Wellengleichung ist der Prototyp einer linearen hyperbolischen partiellen Differentialgleichung 2. Ordnung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{ \partial^2 u}{{\partial x}^2} -\frac {1}{c^2} \frac{ \partial^2 u}{{\partial t}^2} =0}

mit einer Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} . Man transformiert auf neue Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w= x+ct} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v=x-ct} , womit sich die Wellengleichung in:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\left( \frac { \partial}{\partial w} + \frac { \partial}{\partial v} \right) }^2 u ={\left( \frac{ \partial}{\partial w} - \frac{ \partial}{\partial v} \right) }^2 u}

transformiert, woraus:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{ \partial^2}{ \partial w \partial v} u=0}

oder

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left( \frac { \partial }{\partial x} + \frac {1}{c} \frac { \partial}{\partial t} \right) \cdot \left( \frac { \partial}{\partial x} - \frac {1}{c} \frac { \partial}{\partial t} \right) u =0}

folgt, also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u (w,v)= u_1(w) + u_2 (v)} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u=u_1 (x+ct)+u_2 (x-ct)} .

Die Gleichungen der Charakteristiken sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w = \mathrm{const}, v=\mathrm{const}} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x= x_0 \pm ct} mit einer Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0} .

Allgemeine partielle Differentialgleichung 2. Ordnung

Die allgemeine partielle Differentialgleichung 2. Ordnung ist gegeben durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A u_{tt} + 2 B u_{tx} + C u_{xx} + D u_x + E u_t + F u=0}

wobei hier partielle Ableitungen durch Indizes angedeutet sind.

Betrachtet man die Matrix

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M= \begin{pmatrix} A & B \\ B & C \end{pmatrix} }

der Koeffizienten der höchsten Ableitungen, sind die Gleichungen elliptisch für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{det} \, (M )= AC -B^2 >0} , parabolisch für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{det} \, (M)=0} und hyperbolisch für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det \, (M) <0} .

Zusätzlich zur PDE gelte auf einer beliebigen Kurve:[3]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d u_t=u_{tt} dt + u_{tx} dx}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d u_x=u_{xt} dt + u_{xx} dx}

Das sind drei lineare Gleichungen für die zweiten Ableitungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_{tt}, u_{tx}, u_{xx}} . Damit sich diese eindeutig aus den als bekannt vorausgesetzten Werten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u, u_t, u_x} bestimmen lassen, muss für die Determinante gelten:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta =\mathrm{det} \begin{pmatrix} A & 2B & C\\ dt & dx & 0\\ 0 &dt & dx \end{pmatrix} \neq 0}

Für einige Kurven, die Charakteristiken der PDE (der Name stammt von Gaspard Monge), gilt dies nicht, dort gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta=0} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A {(dx)}^2 -2 B dx dt + C {(dt)}^2=0}

oder

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_t= \frac {B \pm \sqrt {(B^2-AC) } } {A}}

Das Anfangswertproblem ist nur eindeutig lösbar, falls die Kurven, auf denen die Anfangswerte vorgegeben sind, nicht tangential zu den Charakteristiken sind. Das ist die Aussage des Satzes von Cauchy-Kowalewskaja für das sogenannte nicht-charakteristische Cauchy-Problem. Da unter dem Wurzelzeichen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle - \mathrm{det} M} steht, ergibt sich, dass Hyperbolische Gleichungen zwei Charakteristikenscharen haben, parabolische eine und elliptische gar keine.

Man kann die Charakteristiken auch geometrisch als Kurven in zwei Dimensionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x,t)} betrachten, deren Normalenvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec n} die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec n M \vec n^T=0}

erfüllen (äquivalent gilt das für die Tangentialvektoren der Kurven).

Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec n \sim (u_t, u_x)} , gilt dann

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_t^2 A + 2 B u_t u_x +Cu_x^2=0}

Führt man zur Diagonalisierung der quadratischen Gleichung eine Hauptachsentransformation durch, erhält man nur beim Fall der hyperbolischen Gleichung, das heißt die Eigenwerte haben entgegengesetzte Vorzeichen, eine Form, die wie in obigem Beispiel der Wellengleichung durch Variablentransformation auf Gleichungen 1. Ordnung mit zwei Charakteristiken zurückgeführt werden kann.

So ist etwa für die Wellengleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M= \begin{pmatrix} -\frac{1}{c^2} & 0 \\ 0 & 1 \end{pmatrix} }

und die Normalenvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec n=(-c, 1), \vec n= (c, 1)} stehen senkrecht auf den zugehörigen Charakteristiken Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x+ct} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x-ct} .

Ein Beispiel einer Gleichung, in der alle drei Typen von PDE vorkommen, ist die Euler-Tricomi-Gleichung oder Tricomi-Gleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_{tt}-t u_{xx}=0}

für die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{det} \, (M )= AC -B^2 = -t} , die für positive Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} hyperbolisch ist, für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t=0} parabolisch und für negative Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} elliptisch. Entsprechend hat sie für negative Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} keine Charakteristiken, für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t\ge0} eine, die sich für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t >0} verzweigt und dort die Charakteristikengleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle dx^2 - t \, dt^2=0} hat, also Charakteristiken Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 3x \pm 2 t^{\frac {3}{2}}= \mathrm{const}} .

Literatur

Weblinks

Einzelnachweise

  1. Helmut Fischer, Helmut Kaul, Mathematik für Physiker, 3. Auflage, Teubner 2008, S. 198. Die Charakteristikenmethode wird in Paragraph 7 (S. 172ff) behandelt.
  2. Fritz John: Partial Differential Equations, 4. Auflage, Springer Verlag 1982, S. 9.
  3. Diskussion nach Arnold Sommerfeld Partial Differential Equations in Physics, Academic Press 1949, S. 36f