Minimallösung

aus Wikipedia, der freien Enzyklopädie

Minimallösung (englisch minimal solution) ist ein mathematischer Begriff, der sowohl in der Approximationstheorie als auch in der Optimierungstheorie sowie in zugehörigen Teilgebieten der Mathematik, wie der Funktionalanalysis, der numerischen Mathematik oder der Variationsrechnung, eine bedeutende Rolle spielt.[1][2][3][4][5]

Den Terminus einer Minimallösung findet man in der Mathematik – wenngleich in einem anderen Sinne verstanden – auch in der Zahlentheorie im Zusammenhang mit der pellschen Gleichung sowie in der Theorie der Differentialungleichungen im Sinne einer Lösung gewisser Anfangswertprobleme.[6]

Definition

Den Begriff verwendet man in einem weiteren und einem engeren Sinne.

Der Begriff im weiteren Sinne

Gegeben seien eine beliebige Menge , eine Teilmenge sowie eine numerische Funktion . Dann gibt es folgende Begriffsfestlegungen:[7]

  • Als Minimalwert von auf bezeichnet man das Infimum , wobei im Falle dieses Infimum gesetzt wird.
  • Unter der Menge der Minimallösungen von auf versteht man die Teilmenge derjenigen Elemente von , welche den Minimalwert von auf annehmen, also die Teilmenge . Jedes dieser Elemente nennt man eine Minimallösung von auf .
  • Ist ein topologischer Raum und dabei , so heißt eine lokale Minimallösung von auf , falls eine (offene) Umgebung von in derart existiert, dass eine Minimallösung von auf ist. Dieser Begriff ist vor allem wichtig für den Fall, dass ein metrischer oder ein normierter Raum ist.
  • Unter einem Maximalwert von auf , einer Maximallösung von auf und einer lokalen Maximallösung von auf versteht man die durch Dualisierung entstehenden Begriffe, wenn man die Ordnungsrelation von nach umkehrt.[7]

Der Begriff im engeren Sinne

Gegeben seien ein normierter Raum (über dem Körper der reellen oder dem Körper der komplexen Zahlen), der mit einer Norm versehen sein soll, sowie ein fester Raumpunkt und weiter eine Teilmenge .

  • Hier betrachtet man, in Bezug auf die dadurch gegebene Abstandsfunktion , die zu gehörige Funktion und wendet die oben im weiteren Sinne festgelegten Begriffsbildungen an. Ist dann eine Minimallösung von auf vorhanden, so hat man – bezüglich und ! – einen Punkt kürzesten Abstands, also einen solchen Raumpunkt , der dieses Abstandsinfimum annimmt und damit die Gleichung erfüllt.
  • Man nennt dieses – insbesondere in Approximationstheorie – eine Minimallösung für bezüglich ,[8] (wobei man hier den Zusammenhang mit der Abstandsfunktion als gegeben unterstellt).
  • Statt von einer Minimallösung (im engeren Sinne) spricht man hier nicht selten auch von einer besten Approximation (beziehungsweise besten Näherung) von bezüglich [9][10][11] oder von einem Proximum zu in [12] oder auch von einer Bestapproximation an / von in [13]. In der Theorie der topologischen Vektorräume wird eine solche Minimallösung (im engeren Sinne) manchmal auch als Lotpunkt bezeichnet.[14]
  • Das Konzept der besten Approximation (englisch best approximation) findet man im gleichen Sinne in dem allgemeineren Zusammenhang der metrischen Räume. Ist ein solcher und sind darin ein fixierter Raumpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in X} sowie eine Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V \subseteq X} gegeben, so bezeichnet man – wie oben!– eine Minimallösung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(a, \cdot)} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} als beste Approximation von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} (oder ähnlich). Dies ist demnach ein Element Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_0 \in V} , welches die Gleichung erfüllt.[15][16]
  • Die Zahl nennt manche Autoren auch die Minimalabweichung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} (oder ähnlich).[11]

Sätze

Die folgenden Sätze zählen zu den Resultaten, die im Zusammenhang mit Fragestellungen zu Minimallösungen oft zur Anwendung kommen.

Minimallösungen in der Allgemeinen Topologie und Analysis

Hier ist als besonders wichtiges Resultat die folgende Version des Weierstraß'schen Satzes vom Minimum zu nennen :[17]

Gegeben seien ein topologischer Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und darin eine nichtleere kompakte oder folgenkompakte Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K \subseteq X} sowie eine unterhalbstetige Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon K \to \R} .
Dann besitzt besitzt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} eine Minimallösung.

Minimallösungen in der konvexen Optimierung

Hier ist zunächst der folgende einfache Satz zu erwähnen, der den Zusammenhang zwischen lokalen und globalen Minimallösungen behandelt:[18]

Gegeben seien ein reeller Vektorraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und darin eine konvexe Teilmenge sowie ein Raumpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0 \in X} . Weiter sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon C \to \R} eine konvexe Funktion, die in eine lokale Minimallösung haben möge.
Dann besitzt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} auch auf ganz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} eine Minimallösung und der zugehörige Minimalwert ist .

Darüber hinaus eine Reihe von weiteren Ergebnissen. Hier ist nicht zuletzt der folgende Charakterisierungssatz der konvexen Optimierung zu nennen:[19]

Gegeben seien ein reeller Vektorraum und darin eine konvexe Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C \subseteq X} sowie ein Raumpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0 \in X} . Weiter sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon C \to \R} eine konvexe Funktion.
Dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0} genau dann eine Minimallösung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} , wenn für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in C} in Hinblick auf das rechtsseitige Gâteaux-Differential die Ungleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_+ f(x_0,x - x_0) \geq 0} erfüllt ist.

Hieraus ergibt sich als Folgerung:[20]

Sind im euklidischen Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\R}^n \; (n \in \N)} ein konvexes Gebiet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U \subseteq {\R}^n} gegeben und darin ein Raumpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0 \in U} sowie eine konvexe differenzierbare Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon U \to \R} , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0} eine Minimallösung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} genau dann, wenn das totale Differential der Nullvektor des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\R}^n} ist.

Der Charakterisierungssatz führt in reellen Prähilberträumen (und speziell in reellen Hilberträumen!) wegen der dort gegebenen reichhaltigen geometrischen Struktur zu einem grundlegenden Approximationssatz, welcher die Bedingungen beschreibt, unter denen dort beste Approximationen gewährtleistet sind. Dieser Approximationssatz ist folgendermaßen zu formulieren:[21]

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein reeller Prähilbert- oder Hilbertraum (mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle \cdot , \cdot \rangle} als innerem Produkt) und seien darin eine konvexe Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C \subseteq X} sowie ein Raumpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0 \in X} gegeben.
Unter diesen Gegebenheiten ist ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_0 \in C} die (eindeutig bestimmte!) beste Approximation von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0} bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} genau dann, wenn für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c \in C} die Ungleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\langle c_0 - x_0 , c - c_0 \rangle} \geq 0} erfüllt ist.

Mit diesem Approximationssatz gewinnt man direkt den folgenden Projektionssatz:[22]

Sei (wie zuvor) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein reeller Prähilbert- oder Hilbertraum und seien darin ein linearer Unterraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U \subseteq X} gegeben sowie ein Raumpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0 \in X} .
Unter diesen Gegebenheiten ist ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_0 \in U} genau dann die beste Approximation von bezüglich , wenn für alle die Gleichung erfüllt ist. Mit anderen Worten: Ein ist die beste Approximation von bezüglich genau dann, wenn der Differenzvektor zu allen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u \in U} senkrecht steht.

Minimallösungen und reflexive Banachräume

Hier sind nicht zuletzt die beiden folgenden Sätze bedeutsam:[23]

Der Satz von James

Dieser Satz geht auf den Mathematiker Robert Clarke James zurück und besagt folgendes:[24]

Ein Banachraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ist genau dann reflexiv, wenn jedes stetige lineare Funktional auf der abgeschlossenen Einheitskugel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{B_X}} eine Minimallösung besitzt.
Der Satz von Schauder-Mazur

Dieser den beiden Mathematikern Juliusz Schauder und Stanisław Mazur zugerechnete Satz lässt sich wie folgt darstellen:[25]

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein reflexiver Banachraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V \subseteq X} eine darin gelegene nichtleere, abgeschlossene, konvexe und beschränkte Teilmenge, so besitzt jede stetige konvexe Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon V \to \R} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} eine Minimallösung.

Minimallösungen und Stabilitätfragen

Zur Stabilitätfrage im Zusammenhang mit Minimallösungen gibt es einen allgemeinen Stabilitätssatz, der folgendermaßen dargestellt werden kann:[26][27]

Gegeben seien ein metrischer Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und darin zwei Folgen von nichtleeren Teilmengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S, S_1, S_2, \ldots \subseteq X} sowie Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f, f_1, f_2, \ldots \colon X \to \R} .
Für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n =1,2,\ldots} gebe es eine Minimallösung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_n} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_n} .
Hierzu soll gelten:
(i) Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_n} seien stetig konvergent gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} .
(ii) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} liege als Teilmenge in dem im Sinne von Kuratowski verstandenen oberen Limes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varlimsup_{n\rightarrow\infty}{S_n}} .
Dann ist jeder Häufungspunkt der Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_n)_{n=1,2,\ldots}} , der in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} liegt, eine Minimallösung von auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} .

Minimallösungen (im engeren Sinne) in der Linearen Approximationstheorie

Hier kennt man einen Existenz- und Eindeutigkeitssatz, der sich zusammengefasst wie folgt angeben lässt:[28][14][29]

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein strikt konvexer normierter Raum und sei darin eine abgeschlossene, lokalkompakte und konvexe Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V \subseteq X} gegeben. Dann gibt es für jeden Raumpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0 \in X} bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} immer genau eine Minimallösung – also genau eine beste Approximation (oder einen Lotpunkt)! – Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_0 \in V} . Dies gilt insbesondere dann, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} in ein Untervektorraum endlicher Dimension ist.

Damit eng zusammenhängend ist der (von dem ungarischen Mathematiker Alfréd Haar im Jahr 1917 vorgelegte) Eindeutigkeitssatz von Haar, der folgendes besagt:[30][31]

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} ein kompakter Raum und sei hierzu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X=C(B)} der (mit der Maximumsnorm versehene!) Funktionenraum der auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} stetigen (reell- oder komplexwertigen) Funktionen.
Hier sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V \subseteq X} ein Untervektorraum der endlichen Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=1,2,\ldots} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} erfülle die Bedingung, dass jede nicht mit der Nullfunktion identische Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v \in V} höchstens Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n-1} Nullstellen in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} besitzen soll.
Dann gibt es bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} für jede Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \in X} exakt eine Minimallösung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_f \in V} .

Ein in der Linearen Approximationstheorie wichtiger Satz ist auch der (nach dem Mathematiker Ivan Singer benannte) Satz von Singer, der eine Charakterisierung der besten Approximationen liefert und folgendes besagt:[32][33]

Es seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,\|\cdot\|)} ein reeller normierter Raum und der zugehörige Dualraum der reellwertigen stetigen linearen Funktionale, wobei dessen Operatornorm ebenfalls mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\|\cdot\|}} bezeichnet sein soll, und es seien weiter ein Untervektorraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V \subseteq X} sowie ein Raumpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in X} gegeben.
Dann gilt:
Ein Unterraumpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_0 \in V} ist eine beste Approximation von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} genau dann, wenn für es ein gibt, welches die folgenden drei Bedingungen erfüllt:
(1) Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \|u\|=1} .
(2) für alle .
(3) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(a - v_0) = \| a - v_0 \| } .

Erläuterungen und Anmerkungen

  • Die obigen Infima existieren stets, da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{\R}} , versehen mit der üblichen Totalordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \leq} , ein vollständiger Verband ist.
  • Für Funktionenfolgen auf metrischen Räume ist der Begriff der stetigen Konvergenz eine Verschärfung des Begriffs der punktweisen Konvergenz.[34][35]
  • Ein Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y \in X} gehört dem im Sinne von Kuratowski verstandenen oberen Limes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varlimsup_{n\rightarrow\infty}{S_n}} definitionsgemäß genau dann an, wenn es dazu in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \N} eine streng monoton wachsende FolgeFehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1 < n_2 < \cdots } sowie eine Auswahlfolge gibt mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty}y_{n_k} = y \ (k \to \infty)} .[36][37]
  • Die im Eindeutigkeitssatz von Haar auftretende Bedingung ist die sogenannte Haarsche Bedingung. Ein endlich-dimensionaler Funktionenunterraum, der in einem Funktionenraum dieser Bedingung genügt, wird als Haarscher Teilraum (englisch Haar subspace) oder Haarscher Raum bezeichnet.[30][38][39][40][31]
  • Der Eindeutigkeitssatz von Haar wird bei manchen Autoren – wegen der in Approximationstheorie hierzu erbrachten Leistungen des sowjetischen Mathematikers Andrej Nikolajewitsch Kolmogoroff – auch Satz von Kolmogoroff-Haar genannt.[40]
  • Für einen endlich-dimensionalen (!) normierten Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} sowie eine abgeschlossene Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F \subseteq X} besitzt jeder Raumpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in X} bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} eine Minimallösung im engeren Sinne, also in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} eine beste Approximation.[41]
  • Für einen normierten Raum (und speziell für einen normierten Funktionenraum) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und jeden darin fest gewählten Raumpunkt ist die zugehörige Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(a, \cdot) \colon X \to {\R}_0^{+}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(a,y) = \| a - x \| \; (x \in X)} stets ein konvexes Funktional[42] und in jedem Falle stetig.
  • Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X = {\R}^n \; (n \in \N)} der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -dimensionale euklidische Raum und sind hier eine abgeschlossene und konvexe Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C \subset X} gegeben sowie eine stetige Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon C \to \R } , so bezeichnet man die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M(f,C) \subseteq C} gelegentlich auch als Minimalmenge. Sie ist im stets abgeschlossen und im Falle, dass konvex ist, eine konvexe Teilmenge des euklidischen Raums.[43]
  • Neben den oben aufgeführten Sätzen gibt es eine Fülle weiterer nennenswerter Resultate. Als wichtiges Beispiel kann hier der Approximationssatz für gleichmäßig konvexe Räume gelten, der bedeutsam für die gesamte Approximationstheorie ist.[44] Daneben wäre auch der Fundamentalsatz der Variationsrechnung zu nennen.

Literatur

  • Lothar Collatz: Funktionalanalysis und numerische Mathematik. Unveränderter Nachdruck der 1. Auflage von 1964 (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Band 120). 2. Auflage. Springer-Verlag, Berlin, Heidelberg, New York 1968, ISBN 3-540-04135-4 (MR0165651).
  • Lothar Collatz, Werner Krabs: Approximationstheorie. Tschebyscheffsche Approximation mit Anwendungen (= Teubner Studienbücher). B. G. Teubner, Stuttgart 1973, ISBN 3-519-02041-6 (MR0445153).
  • Klaus Floret: Weakly Compact Sets. Lectures held at S.U.N.Y., Buffalo, in Spring 1978 (= Lecture Notes in Mathematics. Band 801). Springer-Verlag, Berlin 1980, ISBN 3-540-09991-3 (MR0576235).
  • Alfréd Haar: Die Minkowskische Geometrie und die Annäherung an stetige Funktionen. In: Mathematische Annalen. Band 78, 1917, S. 294–311 ([1]).
  • Harro Heuser: Funktionalanalysis. Theorie und Anwendung (= Mathematische Leitfäden). 4. Auflage. B. G. Teubner, Wiesbaden 2006, ISBN 978-3-8351-0026-8 (MR2380292).
  • Rainer Hettich, Peter Zencke: Numerische Methoden der Approximation und semi-infiniten Optimierung (= Teubner Studienbücher Mathematik). B. G. Teubner, Stuttgart 1982, ISBN 3-519-02063-7 (MR0653476).
  • Peter Kosmol: Optimierung und Approximation (= De Gruyter Studium). 2. Auflage. Walter de Gruyter & Co., Berlin 2010, ISBN 978-3-11-021814-5 (MR2599674).
  • Peter Kosmol, Dieter Müller-Wichards: Optimization in Function Spaces. With stability considerations in Orlicz spaces (= De Gruyter Series in Nonlinear Analysis and Applications. Band 13). Walter de Gruyter & Co., Berlin 2011, ISBN 978-3-11-025020-6 (MR2760903).
  • Gottfried Köthe: Topologische lineare Räume. I. (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Band 107). 2. verbesserte Auflage. Springer Verlag, Berlin, Heidelberg, New York 1966 (MR0194863).
  • Jürg T. Marti: Konvexe Analysis (= Lehrbücher und Monographien aus dem Gebiet der Exakten Wissenschaften, Mathematische Reihe. Band 54). Birkhäuser Verlag, Basel, Stuttgart 1977, ISBN 3-7643-0839-7 (MR0511737).
  • Günter Meinardus: Approximation von Funktionen und ihre numerische Behandlung (= Springer Tracts in Natural Philosophy. Band 4). Springer Verlag, Berlin, Göttingen, Heidelberg, New York 1964 (MR0176272).
  • Arnold Schönhage: Approximationstheorie (= de Gruyter Lehrbuch). Walter de Gruyter & Co., Berlin, New York 1971 (MR0277960).
  • Ivan Singer: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Translation of the original Romanian version "Cea mai bună aproximare în spații vectoriale normate prin elemente din subspații vectoriale". Translated by Radu Georgescu (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Band 171). Springer Verlag, Berlin, Heidelberg, New York 1970 (MR0270044).
  • A. Wayne Roberts, Dale E. Varberg: Convex Functions (= Pure and Applied Mathematics. Band 57). Academic Press, New York, San Francisco, London 1973 (MR0442824).
  • Guido Walz [Red.]: Lexikon der Mathematik in sechs Bänden. Erster Band. A bis Eif. Spektrum Akademischer Verlag, Heidelberg, Berlin 2001, ISBN 3-8274-0303-0 (MR1839735).

Siehe auch

Einzelnachweise

  1. Peter Kosmol: Optimierung und Approximation. 2010, S. II (Vorwort), S. 8 ff., S. 79 ff.
  2. Lothar Collatz: Funktionalanalysis und numerische Mathematik. 1968, S. 320 ff.
  3. Lothar Collatz, Werner Krabs: Approximationstheorie. 1973, S. 12 ff., S. 38 ff.
  4. Günter Meinardus: Approximation von Funktionen und ihre numerische Behandlung. 1964, S. 1 ff.
  5. Peter Kosmol, Dieter Müller-Wichards: Optimization in Function Spaces. 2011, S. 1 ff., S. 385
  6. Weder auf den zahlentheoretischen Aspekt noch auf den in der Theorie der Differentialungleichungen wird hier eingegangen. Eine Darstellung zu den Minimallösungen der pellschen Gleichung findet man etwa in dem Lehrbuch „Einführung in die Zahlentheorie“ von Peter Bundschuh (Springer 1988). Der Begriff der Minimallösung einer Differentialungleichung wird kurz im dritten Band des Lexikons der Mathematik in sechs Bänden (Spektrum Akademischer Verlag, Heidelberg & Berlin 2001, S. 425) dargelegt.
  7. a b Kosmol, op. cit., S. 8
  8. Meinardus, op. cit., S. 63
  9. Kosmol, op. cit., S. 98 ff.
  10. Jürg T. Marti: Konvexe Analysis. 1977, S. 31
  11. a b Guido Walz [Red.]: Lexikon der Mathematik. Erster Band. 2001, S. 202
  12. Arnold Schönhage: Approximationstheorie. 1971, S. 8 ff., S. 148 ff.
  13. Harro Heuser: Funktionalanalysis. 2006, S. 29 ff., S. 572 ff.
  14. a b Gottfried Köthe: Topologische lineare Räume. I. 1966, S. 346 ff.
  15. Kosmol, op. cit., S. 68 ff.
  16. Ivan Singer: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. 1970, S. 377 ff.
  17. Kosmol, op. cit., S. 450
  18. A. Wayne Roberts, Dale E. Varberg: Convex Functions. 1973, S. 122–128, S. 123
  19. Kosmol, op. cit., S. 78
  20. Kosmol, op. cit., S. 79
  21. Kosmol, op. cit., S. 100–101
  22. Kosmol, op. cit., S. 102
  23. Kosmol, op. cit., S. 388 ff.
  24. Kosmol, op. cit., S. 391
  25. Kosmol, op. cit., S. 390
  26. Kosmol, op. cit., S. 71
  27. Kosmol / Müller-Wichards, op. cit., S. 142
  28. Collatz, op. cit., S. 323
  29. Meinardus, op. cit., S. 1
  30. a b Meinardus, op. cit., S. 15–16
  31. a b Rainer Hettich, Peter Zencke: Numerische Methoden der Approximation und semi-infiniten Optimierung. 1982, S. 115–116
  32. Kosmol, op. cit., S. 401
  33. Kosmol / Müller-Wichards, op. cit., S. 109
  34. Kosmol, op. cit., S. 71
  35. Kosmol / Müller-Wichards, op. cit., S. 134
  36. Kosmol, op. cit., S. 69
  37. Kosmol / Müller-Wichards, op. cit., S. 131
  38. Kosmol, op. cit., S. 298
  39. Kosmol / Müller-Wichards, op. cit., S. 12
  40. a b Marti, op. cit., S. 58–59
  41. Kosmol, op. cit., S. 68
  42. Vgl. Hettich / Zencke, op. cit., S. 39! Hettich und Zencke führen den Beweis zwar nur für den Fall des Raums der auf einem Kompaktum des stetigen reellwertigen Funktionen. Der Sachverhalt gilt jedoch offensichtlich allgemeiner.
  43. Vgl. Marti, op. cit., S. 184! Marti erwähnt hier die Konvexitätsbedingung für die Funktion zwar nicht. Dies ist jedoch offenbar gemeint. Der hier dargestellte Sachverhalt gilt auch allgemein in normierten Räumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} .
  44. Schönhage, op. cit., S. 15