Wahrscheinlichkeitserzeugende Funktion
Eine wahrscheinlichkeitserzeugende Funktion, auch kurz erzeugende Funktion[1] oder Erzeugendenfunktion[2] genannt, ist in der Wahrscheinlichkeitstheorie eine spezielle reelle Funktion. Jeder diskreten Wahrscheinlichkeitsverteilung auf den natürlichen Zahlen und jeder Zufallsvariable mit Werten in den natürlichen Zahlen kann eine wahrscheinlichkeitserzeugende Funktion zugeordnet werden. Umgekehrt kann auch aus jeder wahrscheinlichkeitserzeugenden Funktion die Wahrscheinlichkeitsverteilung oder die Verteilung der Zufallsvariable eindeutig rekonstruiert werden.
Aufgrund dieser eindeutigen Zuordnung ermöglichen es wahrscheinlichkeitserzeugende Funktionen, gewisse Eigenschaften der Verteilungen und Operationen von Zufallsvariablen auf Eigenschaften und Operationen von Funktionen zu übertragen. So existiert beispielsweise eine Beziehung zwischen den Ableitungen der wahrscheinlichkeitserzeugenden Funktion und dem Erwartungswert, der Varianz und weiteren Momenten der Zufallsvariable. Ebenso entspricht der Addition von stochastisch unabhängigen Zufallsvariablen oder der Faltung der Wahrscheinlichkeitsverteilungen der Multiplikation der entsprechenden wahrscheinlichkeitserzeugenden Funktionen. Diese Vereinfachung wichtiger Operationen ermöglicht dann beispielsweise die Untersuchung von komplexen stochastischen Objekten wie dem Bienaymé-Galton-Watson-Prozess.
Definition
Die wahrscheinlichkeitserzeugende Funktion lässt sich auf zwei Arten angeben: einerseits mittels einer Wahrscheinlichkeitsverteilung, andererseits mittels der Verteilung einer Zufallsvariablen. Beide Arten sind äquivalent in dem Sinn, dass jede Wahrscheinlichkeitsverteilung als Verteilung einer Zufallsvariablen aufgefasst werden kann und jede Verteilung einer Zufallsvariable wieder eine Wahrscheinlichkeitsverteilung ist. Bei beiden Definitionen ist gesetzt. Mit sei die Menge der natürlichen Zahlen inklusive der 0 bezeichnet.
Für Wahrscheinlichkeitsverteilungen
Ist eine Wahrscheinlichkeitsverteilung auf mit Wahrscheinlichkeitsfunktion , so heißt die Funktion
definiert durch
die wahrscheinlichkeitserzeugende Funktion von beziehungsweise von .[3]
Für Zufallsvariablen
Für eine Zufallsvariable mit Werten in ist die wahrscheinlichkeitserzeugende Funktion
von beziehungsweise von definiert als
- .[4]
Somit ist die wahrscheinlichkeitserzeugende Funktion einer Zufallsvariable genau die wahrscheinlichkeitserzeugende Funktion ihrer Verteilung. Alternativ lässt sich die wahrscheinlichkeitserzeugende Funktion einer Zufallsvariable auch über den Erwartungswert definieren als
- .[4]
Elementare Beispiele
Gegeben sei eine Bernoulli-verteilte Zufallsvariable , also . Dann ist und . Rein formell fasst man als Zufallsvariable mit Werten in ganz auf und setzt dann für . Dann ist
Ist die Zufallsvariable binomialverteilt mit Parametern und , also , so ist für
und für . Die wahrscheinlichkeitserzeugende Funktion ist dann
- .
Dies folgt mittels des binomischen Lehrsatzes.
Eigenschaften
Eigenschaften als Funktion
Die wahrscheinlichkeitserzeugende Funktion ist eine Potenzreihe und hat einen Konvergenzradius von mindestens 1, sie konvergiert also für alle . Dies folgt daraus, dass alle Koeffizienten der Potenzreihe positiv sind und sich zu 1 aufsummieren. Daraus folgt dann für . Damit erben die wahrscheinlichkeitserzeugenden Funktionen auf dem untersuchten Intervall alle Eigenschaften der Potenzreihen: Sie sind stetig und auf dem Intervall unendlich oft differenzierbar.
Da jedes der Monome konvex und monoton wachsend ist und diese Eigenschaften abgeschlossen bezüglich konischen Kombinationen sind, ist auch die wahrscheinlichkeitserzeugende Funktion konvex und monoton wachsend.
Umkehrbarkeit
Die wahrscheinlichkeitserzeugende Funktion bestimmt die Verteilung von eindeutig:
- Sind und -wertige Zufallsvariable mit für alle mit einem , dann folgt für alle .
Es gilt dann nämlich nach der Taylor-Formel für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \in \mathbb{N}_0}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P[X = k] = \dfrac{ m_{X}^{(k)} (0) }{k!} = \dfrac{ m_{Y}^{(k)} (0) }{k!} = P[Y = k]} .
Dieser Zusammenhang zeigt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X} die Wahrscheinlichkeiten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P[X=k]} „erzeugt“ und die Wahrscheinlichkeitsfunktion aus der wahrscheinlichkeitserzeugenden Funktion rekonstruiert werden kann.
Faltung und Summen von Zufallsvariablen
Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} unabhängige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N}_{0}} -wertige Zufallsvariablen, so gilt für die wahrscheinlichkeitserzeugende Funktion von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X + Y}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{X+Y}(t) = \operatorname{E}(t^{X+Y}) = \operatorname{E}(t^X \cdot t^Y) = \operatorname{E}(t^X) \cdot \operatorname{E}(t^Y) = m_X(t) \cdot m_Y(t)} ,
denn mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} sind auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t^X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t^Y} unabhängig. Das lässt sich direkt auf endliche Summen unabhängiger Zufallsvariabler verallgemeinern: Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1 , \ldots , X_n} unabhängige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N}_{0}} -wertige Zufallsvariablen, dann gilt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_n = \sum_{i=1}^n X_i}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{S_n} (t)= \prod_{i=1}^n m_{X_i} (t) } .
Daraus folgt dann direkt für die wahrscheinlichkeitserzeugende Funktion der Faltung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P* Q } der Wahrscheinlichkeitsmaße Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P,Q }
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{P*Q}(t)=m_{P}(t)m_Q(t) } .
Beispiel
Seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1,X_2 } unabhängige, Bernoulli-verteilte Zufallsvariablen zum selben Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p } . Dann ist die Summe der Zufallsvariablen bekanntermaßen binomialverteilt zu den Parametern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2 } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p } , also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1+X_2 \sim \operatorname{Bin}_{2,p} } . Mit den oben im Abschnitt Elementare Beispiele hergeleiteten wahrscheinlichkeitserzeugenden Funktionen für die Bernoulli-Verteilung und die Binomialverteilung folgt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{X_1}(t) \cdot m_{X2}(t)=(1-p+pt)^2=m_{\operatorname{Bin}_{2,p}}(t)=m_{X_1+X_2}(t) } .
Momenterzeugung
Für eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N}_{0}} -wertige Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \in \N_0} ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E\left[ \binom{X}{k} \right] = \dfrac{ \lim_{t \uparrow 1} m_{X}^{(k)} (t) }{k!}}
beziehungsweise
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname E\left[ X(X-1)\dots(X-k+1)\right]= \lim_{t \uparrow 1} m_{X}^{(k)} (t) } .
Dabei sind beide Seiten der beiden Gleichungen genau dann endlich, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E} \left[X^k \right]} endlich ist.
Damit lassen sich insbesondere der Erwartungswert und die Varianz einer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N}_{0}} -wertigen Zufallsvariablen aus ihrer wahrscheinlichkeitserzeugenden Funktion ermitteln:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}\left[X \right] = \lim_{t \uparrow 1} m_X'(t)} ,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var} \left[ X \right] = \operatorname E\left[X(X-1)\right] + \operatorname E\left[X \right] - \operatorname E\left[X \right]^2 = \lim_{t \uparrow 1} \left( m_X''(t) + m_X'(t) - m_X'(t)^2 \right)} .
Die Betrachtung des linksseitigen Grenzwertes ist hier notwendig, da die Differenzierbarkeit von Potenzreihen auf dem Rande des Konvergenzradius nicht notwendigerweise gegeben ist.
Beispiel
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X } eine binomialverteilte Zufallsvariable, also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X \sim \operatorname{Bin}_{n,p} } . Dann ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X(t)=(pt+1-p)^n , \quad m'_X(t)=np(pt+1-p)^{n-1} \text{ und } m''_X(t)=n(n-1)p^2(pt+1-p)^{n-2} }
Beide Ableitungen sind Polynome und können daher problemlos für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t=1 } ausgewertet werden, der linksseitige Grenzwert braucht also nicht betrachtet werden. Es ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m'_X(1)=np \text{ und } m''_X(1)=n(n-1)p^2 } .
Damit folgt mit den obigen Ergebnissen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(X)= m'_X(1)=np, \quad \operatorname{Var}(X)= m_X''(1) + m_X'(1) - m_X'(1)^2=np(1-p) } .
Lineare Transformation von Zufallsvariablen
Lineare Transformationen der Zufallsvariable wirken wie folgt auf die wahrscheinlichkeitserzeugende Funktion:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{aX+b}(t)=t^bm_X(t^a) } .
Beispiel
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X } eine Bernoulli-verteilte Zufallsvariable, also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X \sim \operatorname{Ber}(p) } , so ist für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a,b \in \N } die Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y=aX+b } zweipunktverteilt auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{b,a+b\} } . Die wahrscheinlichkeitserzeugende Funktion ist dann
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_Y(t)=m_{aX+b}(t)=t^bm_X(t^a)=t^b\cdot(1-p+pt^a)=(1-p)t^b+pt^{a+b} } .
Konvergenz
Die punktweise Konvergenz der wahrscheinlichkeitserzeugenden Funktion lässt sich direkt mit der Konvergenz in Verteilung in Beziehung setzen:
- Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X, X_1, X_2, X_3, \dots } Zufallsvariablen mit zugehörigen wahrscheinlichkeitserzeugenden Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m, m_1, m_2, m_3, \dots } , so konvergieren die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_n } genau dann in Verteilung gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X } , wenn die wahrscheinlichkeitserzeugenden Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_n } für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t \in [0,\varepsilon) } mit einem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon \in (0,1) } punktweise gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m } konvergieren.[5]
Die Aussage gilt ebenso für die wahrscheinlichkeitserzeugenden Funktionen von Wahrscheinlichkeitsverteilungen und die schwache Konvergenz.
Wahrscheinlichkeitserzeugende Funktionen von zufälligen Summen
Mittels wahrscheinlichkeitserzeugender Funktionen lassen sich leicht Summen über eine zufällige Anzahl von Summanden berechnen. Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_i)_{i \in \mathbb{N}} } unabhängig identisch verteilte Zufallsvariablen mit Werten in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N}_0 } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T } eine weitere, von allen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_i} unabhängige Zufallsvariable mit demselben Wertebereich. Dann hat die Zufallsvariable
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z=\sum_{i=1}^TX_i }
die wahrscheinlichkeitserzeugende Funktion
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_Z(t)=m_T(m_{X_1}(t)) } .
Diese Eigenschaft macht man sich zum Beispiel bei der Analyse des Galton-Watson-Prozesses zunutze. Nach den obigen Regeln für die Berechnung des Erwartungswertes gilt dann mit der Kettenregel
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(Z)=\operatorname{E}(T) \cdot \operatorname{E}(X_1) } ,
was der Formel von Wald entspricht.
Für die Varianz gilt dann
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(Z)=\operatorname{Var}(T)\operatorname{E}(X_1)^2+\operatorname{E}(T)\operatorname{Var}(X_1) } .
Dies ist genau die Blackwell-Girshick-Gleichung. Auch sie folgt mittels der obigen Regeln zur Bestimmung der Varianz und der Produktregel.
Multivariate wahrscheinlichkeitserzeugende Funktion
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X=(X_1, \dots , X_k) } ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -dimensionaler Zufallsvektor mit Werten in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N}_0^k} , so ist die wahrscheinlichkeitserzeugende Funktion von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X } definiert als
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X(t):=m_X(t_1,\dots, t_k)=\operatorname{E} \left( \prod_{i=1}^kt_i^{X_i}\right)=\sum_{x_1,\ldots,x_k=0}^{\infty} f_P(x_1,\ldots,x_k)t_1^{x_1} \dots t_k^{x_k}}
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_P(x_1,\ldots,x_k) = P(X_1 = x_1, \dotsc, X_k = x_k)} .
Erwartungswert, Varianz und Kovarianz
Analog zum eindimensionalen Fall gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(X_i)=\frac{\partial m_X}{\partial t_i}(1,\dots, 1) \quad \forall i \in \{1,\dots,k\}}
sowie
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(X_i)=\frac{\partial^2 m_X}{{\partial t_i}^2}(1,\dots, 1)+ \frac{\partial m_X}{\partial t_i}(1,\dots, 1)\left( 1- \frac{\partial m_X}{\partial t_i}(1,\dots, 1)\right) \quad \forall i \in \{1,\dots,k\}}
und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Cov}(X_i,X_j)=\frac{\partial^2 m_X}{\partial t_i \partial t_j}(1,\dots, 1) -\frac{\partial m_X}{\partial t_i}(1,\dots, 1)\cdot \frac{\partial m_X}{\partial t_j}(1,\dots, 1)\quad \forall i,j \in \{1,\dots,k\}}
Beispiele
In der Tabelle sind einige wahrscheinlichkeitserzeugende Funktionen von gängigen diskreten Verteilungen aufgeführt. Wahrscheinlichkeitserzeugende Funktionen von Wahrscheinlichkeitsverteilungen, die hier nicht aufgeführt sind, stehen in dem jeweiligen Artikel der Wahrscheinlichkeitsfunktion.
Verteilung | Wahrscheinlichkeitserzeugende Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X(t) } |
---|---|
Bernoulli-Verteilung | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X(t) = 1-p + p t} |
Zweipunktverteilung | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X(t)=(1-p)t^a+pt^b } |
Binomialverteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B(n,p) } | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X(t) = (1-p + p t)^n} |
Geometrische Verteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(p) } | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X(t) = \frac{p}{1 - (1-p)t}} |
Negative Binomialverteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle NB (r,p) } | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X(t) = \left(\frac{p}{1 - (1-p)t}\right)^r} |
Diskrete Gleichverteilung auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{1,\dotsc,n\}} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X(t) = \sum_{k=1}^n \frac{1}{n} t^k = \frac{t^{n+1} - t}{n(t-1)}} |
Logarithmische Verteilung | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{X}(t) = \frac{\ln(1-pt)}{\ln(1-p)}} |
Poisson-Verteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_\lambda } | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{X}(t) = \mathrm{e}^{\lambda(t-1)}} |
Verallgemeinerte Binomialverteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle GB (p) } | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{X}(t)=\prod\limits_{j=1}^n (1-{p_j}+{p_j}{t})} |
Multivariate Verteilungen | |
Multinomialverteilung | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X(t)=\biggl( \sum_{i=1}^k p_i t_i \biggr)^n} |
Insbesondere ist die wahrscheinlichkeitserzeugende Funktion der Binomialverteilung gleich dem n-fachen Produkt der wahrscheinlichkeitserzeugenden Funktion der Bernoulli-Verteilung, da die Binomialverteilung genau die Summe von unabhängigen Bernoulli-Verteilungen ist. Dasselbe gilt für die geometrische Verteilung und die negative Binomialverteilung.
Zusammenhang mit weiteren erzeugenden Funktionen
Die wahrscheinlichkeitserzeugende Funktion einer Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X } mit Wahrscheinlichkeitsfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p } ist ein Spezialfall einer erzeugenden Funktion mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_i=p\left({i}\right) } für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i \in \mathbb{N}_0 } . Außer der wahrscheinlichkeitserzeugenden Funktion gibt es noch drei weitere erzeugende Funktionen in der Stochastik, die aber nicht nur für diskrete Verteilungen definiert werden. Die momenterzeugende Funktion ist definiert als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X\left(t\right):=\operatorname{E}\left(e^{tX}\right)} . Demnach gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X\left(e^t\right)=M_X\left(t\right) } Die charakteristische Funktion ist definiert als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi_X\left(t\right):=\operatorname{E}\left(e^{itX}\right)} . Demnach gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X\left(e^{it}\right)=\varphi_X\left(t\right) } .
Außerdem gibt es noch die kumulantenerzeugende Funktion als Logarithmus der momenterzeugenden Funktion. Aus ihr wird der Begriff der Kumulante abgeleitet.
Literatur
- Klaus D. Schmidt: Maß und Wahrscheinlichkeit. Springer, Berlin Heidelberg 2009, ISBN 978-3-540-89729-3, S. 370 ff.
- Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6.
- Ulrich Krengel: Einführung in die Wahrscheinlichkeitstheorie und Statistik. Für Studium, Berufspraxis und Lehramt. 8. Auflage. Vieweg, Wiesbaden 2005, ISBN 3-8348-0063-5.
- Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7.
- Christian Hesse: Angewandte Wahrscheinlichkeitstheorie. 1. Auflage. Vieweg, Wiesbaden 2003, ISBN 3-528-03183-2.
Einzelnachweise
- ↑ Ehrhard Behrends: Elementare Stochastik. Ein Lernbuch – von Studierenden mitentwickelt. Springer Spektrum, Wiesbaden 2013, ISBN 978-3-8348-1939-0, S. 108, doi:10.1007/978-3-8348-2331-1.
- ↑ Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, S. 79, doi:10.1007/978-3-642-36018-3.
- ↑ Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 111, doi:10.1515/9783110215274.
- ↑ a b Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 114, doi:10.1515/9783110215274.
- ↑ Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, S. 83, doi:10.1007/978-3-642-36018-3.