Leuchtdichte

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Nit (Leuchtdichteeinheit))
Physikalische Größe
Name Leuchtdichte
Formelzeichen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L_\mathrm{v}}
Größen- und
Einheitensystem
Einheit Dimension
SI cd·m−2 L−2·J

Die Leuchtdichte Lv (englisch luminance)[1] liefert detaillierte Information über die Orts- und Richtungsabhängigkeit des von einer Lichtquelle abgegebenen Lichtstroms. Die Leuchtdichte einer Fläche bestimmt, mit welcher Flächenhelligkeit das Auge die Fläche wahrnimmt und hat daher von allen photometrischen Größen den unmittelbarsten Bezug zur optischen Sinneswahrnehmung.

Die Leuchtdichte beschreibt die Helligkeit von ausgedehnten, flächenhaften Lichtquellen; für die Beschreibung der Helligkeit von punktförmigen Lichtquellen ist die Lichtstärke besser geeignet.

Definition

Datei:Flickr - bslmmrs - Barcode horse.jpg
Die meisten Objekte geben von unterschiedlichen Stellen ihrer Oberfläche unterschiedlich viel Licht ab.
Datei:Uv-LED.jpg
Die meisten Objekte geben in unterschiedliche Richtungen unterschiedlich viel Licht ab.

Für den Helligkeitseindruck einer Lichtquelle sind neben dem ausgesandten Lichtstrom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \Phi_\mathrm v} , gemessen in Lumen (lm), vor allem zwei weitere Größen maßgebend:

  • die Fläche , von der dieser Lichtstrom ausgeht. Eine kleine Fläche erscheint heller als eine große Fläche, die gleich viel Licht abstrahlt. Die entsprechende photometrische Größe ist die spezifische Lichtausstrahlung , gemessen in Lumen durch Quadratmeter (lm/m2). Bei nicht gleichmäßiger Ausstrahlung verwendet man den Lichtstrom pro Flächenelement: Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle M_{\mathrm {v} }=\mathrm {d} \Phi _{\mathrm {v} }/\mathrm {d} A} .
  • der Raumwinkel , in den das Licht ausgestrahlt wird. Bei Bündelung in einen kleinen Raumwinkel erscheint die Lichtquelle heller. Die entsprechende photometrische Größe ist die Lichtstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_\mathrm v=\Phi_\mathrm v/\Omega} , gemessen in Lumen durch Steradiant oder Candela (1 cd = 1 lm/sr). Bei nicht gleichmäßiger Ausstrahlung gilt entsprechend Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_\mathrm v=\mathrm d \Phi_\mathrm v/\mathrm d\Omega} .

Der Begriff der Leuchtdichte kombiniert beides und beschreibt auf diese Weise sowohl die Orts- als auch die Richtungsabhängigkeit des abgegebenen Lichtstroms:[2][1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} ist hierbei der Winkel zwischen Abstrahlrichtung und Flächennormale, die senkrecht auf dem Flächenelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A\ } steht. Im Fall einer gleichmäßig leuchtenden ebenen Fläche mit gleichmäßiger Lichtstärke in den Raumwinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} vereinfacht sich diese Gleichung zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L_\mathrm{v} \, = \, \frac{I_\mathrm{v}}{A \ \cos(\beta)} \, = \, \frac{\Phi_\mathrm{v}}{A \ \cos(\beta) \cdot \Omega} } .

Der Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1/\cos(\beta)} wird hinzugefügt, weil das abstrahlende Flächenelement um diesen Faktor verkürzt erscheint, der unter dem Polarwinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} abgegebene Lichtstrom also um den Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos(\beta)} geringer ist als der senkrecht abgegebene Lichtstrom. Die Division durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos(\beta)} rechnet diesen geometrischen Effekt heraus, so dass in der Leuchtdichte nur noch eine eventuelle physikalische Richtungsabhängigkeit aufgrund der Oberflächeneigenschaften (z. B. dem Leuchtdichtekoeffizient) übrig bleibt.

Für die Definition der Leuchtdichte ist es unerheblich, ob es sich bei dem vom Flächenelement abgegebenen Licht um (thermische oder nichtthermische) Eigenemission, um transmittiertes oder reflektiertes Licht oder eine Kombination daraus handelt. Die Leuchtdichte ist an jedem Punkt des Raumes definiert, an dem Licht vorhanden ist.[3] Man denke sich anstelle eines Licht abstrahlenden Oberflächenelements gegebenenfalls ein fiktives von Licht durchstrahltes Flächenelement im Raum.

Maßeinheiten

Die SI-Einheit der Leuchtdichte ist Candela pro Quadratmeter (cd/m²).

Im englischsprachigen Raum, vor allem in den USA, wird dafür auch die Bezeichnung Nit (Einheitenzeichen nt, von lateinisch nitere = „scheinen“, Mehrzahl Nits) verwendet: 1 nt = 1 cd/m². Das Nit ist in der EU und der Schweiz keine gesetzliche Einheit.

Weitere Einheiten sind:

  • Stilb: 1 sb = 1 cd/cm² = 10.000 cd/m² (cgs-Einheit)
  • Apostilb: 1 asb = 1 blondel = 1/π × 10−4 sb = 1/π cd/m²
  • Lambert: 1 L = 1 la = 104/π cd/m² ≈ 3183 cd/m² (in den USA noch gebräuchlich)
  • Footlambert: 1 fL = 1/π cd/ft² ≈ 3,426 cd/m²

Typische Werte

Empfindlichkeit der Augen

Der Beobachter nimmt die Leuchtdichten der ihn umgebenden Flächen unmittelbar als deren Flächenhelligkeiten wahr. Aufgrund der Anpassungsfähigkeit des Auges können die wahrnehmbaren Leuchtdichten zahlreiche Größenordnungen überstreichen. Das menschliche Auge hat zwei Arten von Sinneszellen: die besonders lichtempfindlichen Stäbchen und die farbempfindlichen Zapfen.

  • Bei ca. 3e-6 cd/m2 liegt die Sehschwelle. Ab dieser Leuchtdichte ist Lichtwahrnehmung mit den Stäbchen (Nachtsehen) möglich.
  • Ab 3…30 · 10−3 cd/m2 tragen auch die Zapfen zum Seheindruck bei.
  • Ab 3…30 cd/m2 spielt der Beitrag der Stäbchen keine Rolle mehr (reines Tagesehen).
  • Ab 105…106 cd/m2 tritt Sättigung der Zapfen (Blendung) auf.

Die angegebenen Werte schwanken von Mensch zu Mensch und sind auch von der Wellenlänge des Lichts abhängig.

Lichtquellen

Natürliche Lichtquellen
Leuchtdichte (cd/m2)
bewölkter Nachthimmel 10−6…10−4
sternklarer Nachthimmel 0,001
Nachthimmel bei Vollmond 0,1
mittlerer bedeckter Himmel 2.000
Oberfläche des Mondes 2.500
mittlerer klarer Himmel 8.000
Sonnenscheibe am Horizont 6e5
Sonnenscheibe am Mittag 1600e6
Technische Strahler
Leuchtdichte (cd/m2)
Elektrolumineszenz-Folie 30…200
T8 Fluoreszenzröhre, kaltweiß 11.000
matte 60-W-Glühlampe 120.000
Natriumdampflampe 500.000
Schwarzer Strahler bei 2045 K[4] 600.000
Draht einer Halogenlampe 20… 30e6
weiße LED 50e6
Xenon-Gasentladungslampe[5] 5000e6
Monitore
Leuchtdichte (cd/m2)
Röhrenmonitor: schwarz teilweise < 0,01
LCD: schwarz 0,15…0,8
Röhrenmonitor: weiß 80…200
LCD: weiß 150…500
LED Outdoor Videowall 5.000…7.500

Lambertscher Strahler

Mit der oben genannten Definition Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle L_\mathrm{v} = \mathrm{d}^2\Phi_\mathrm{v}/(\mathrm{d}A \cos(\beta) \cdot \mathrm{d}\Omega)} kann man umgekehrt den Lichtstrom berechnen, der von einer Abstrahlfläche emittiert wird:

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \Phi _{\mathrm {v} }=\int _{\Omega }\int _{A}L_{\mathrm {v} }(\beta ,\varphi ,x,y)\cdot \cos(\beta )\mathrm {d} A\cdot \mathrm {d} \Omega \,} .

Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L_\mathrm v} im Allgemeinen vom Ort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x, y} auf der Leuchtfläche und von den überstrichenen Richtungen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} abhängen kann, ergibt sich unter Umständen ein sehr kompliziertes Integral.

Eine wesentliche Vereinfachung tritt ein, wenn die Oberfläche von allen Stellen in alle Richtungen dieselbe Leuchtdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L_\mathrm v =\mathrm{const.}} abgibt. Einen solchen Körper nennt man diffusen Strahler oder lambertschen Strahler.

Ein Beispiel für eine diffus leuchtende Fläche ist ein beleuchtetes Blatt Papier. Dass das Papier diffus strahlt, also in alle Richtungen dieselbe Leuchtdichte abgibt, bedeutet für den Betrachter, dass es aus allen Richtungen betrachtet dieselbe Flächenhelligkeit aufweist. Da es aber bei schräger Betrachtung um den Projektionsfaktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos\beta} verkürzt erscheint (also einen kleineren Raumwinkel einnimmt) erreicht den Betrachter trotz gleich gebliebener Flächenhelligkeit eine geringere Lichtmenge: die Lichtstärke in dieser Richtung ist geringer.

Der von einem lambertschen Strahler in eine bestimmte Richtung abgegebene Lichtstrom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_\mathrm v} variiert nur noch mit dem Cosinus des Abstrahlwinkels Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos\beta} , und das Integral ist einfach:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_\mathrm v = A \cdot L_\mathrm v \int_{\Omega} \cos(\beta) \ \mathrm{d} \, \Omega} .

Dieses verbleibende Integral hängt nur noch von der Gestalt und Lage des Raumwinkels Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} ab und kann unabhängig von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L_\mathrm v} gelöst werden. Auf diese Weise können nur von der Sender- und Empfängergeometrie abhängige allgemeine Sichtfaktoren ermittelt und fertig tabelliert werden.

Wird beispielsweise die Lichtausstrahlung in den gesamten von der Leuchtfläche überblickten Halbraum betrachtet, so ergibt sich für das Integral der Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \int_\cap \cos(\beta) \ \mathrm{d} \, \Omega =\pi} und der Lichtstrom in den gesamten Halbraum beträgt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_\mathrm v = \pi \, A \, L_\mathrm v\,} .

Die spezifische Lichtausstrahlung ist dann entsprechend

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle M_{\mathrm {v} }=\pi L_{\mathrm {v} }\,} .

Beispiel: Wenn ein Bildschirm mit der Leuchtdichte 200 cd/m2 und der Fläche 0,6 m2 die Eigenschaften eines lambertschen Strahlers hat, hat er eine spezifische Lichtausstrahlung von 200π lm/m2 und emittiert einen Lichtstrom von 120π lm.

Photometrisches Grundgesetz

Das Photometrische Grundgesetz[6] (auch: „radiometrisches und photometrisches Grundgesetz“[7]) beschreibt den Lichtaustausch zwischen zwei Flächen. Die Leuchtdichte ist hier eine zentrale Größe.

Lichtausstrahlung

Datei:Fotometrisches Grundgesetz (Schema) DE.svg
Zwei Flächen als gegenseitige Strahlungspartner im photometrischen Grundgesetz

Betrachtet man ein Flächenelement , welches mit der Leuchtdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L_1} ein im Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} befindliches Flächenelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A_2} beleuchtet, so spannt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A_2} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A_1} aus betrachtet den Raumwinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}\Omega_2 = \cos(\beta_2)\mathrm{d}A_2 / r^2} auf, und aus der ersten Gleichung im vorigen Abschnitt folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}^2 \Phi_{1\rightarrow2} = L_1 \cdot \cos(\beta_1) \, \mathrm{d}A_1 \, \mathrm{d}\Omega_2 = \frac{L_1 \cdot \cos(\beta_1) \, \cos(\beta_2) \, \mathrm{d}A_1 \, \mathrm{d}A_2}{r^2}}

Dabei sind und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta_2} die Neigungswinkel der Flächenelemente gegen die gemeinsame Verbindungslinie.

Dies ist das photometrische Grundgesetz. Durch Integration über die beiden Flächen ergibt sich der insgesamt von Fläche 1 nach Fläche 2 fließende Lichtstrom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_{1\rightarrow2}} .

Lichteinstrahlung

Die Beleuchtungsdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} ist analog zur Leuchtdichte, jedoch für den Einstrahlungsfall definiert. Sie gibt an, welcher Lichtstrom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}^2 \Phi} aus der durch den Polarwinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} und den Azimutwinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} gegebenen Richtung pro projiziertem Flächenelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos(\beta) \mathrm{d}A} und pro Raumwinkelelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}\Omega} empfangen wird. Die bisher abgeleiteten Gleichungen gelten analog. Insbesondere gilt für den auf Flächenelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A_2} empfangenen, von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A_1} abgegebenen Lichtstrom:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}^2 \Phi_{2\leftarrow1} = K_2 \cdot \cos(\beta_2) \, \mathrm{d}A_2 \, \mathrm{d}\Omega_1 = \frac{K_2 \cdot \cos(\beta_1) \, \cos(\beta_2) \, \mathrm{d}A_1 \, \mathrm{d}A_2}{r^2}}

wobei diesmal der von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A_1} aufgespannte Raumwinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}\Omega_1 = \cos(\beta_1)\mathrm{d}A_1 / r^2} auftritt.

Folgerung

Der von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A_1} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A_2} ausgesandte und der auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A_2} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A_1} empfangene Lichtstrom müssen identisch sein (sofern nicht in einem zwischen den Flächen liegenden Medium Licht durch Absorption oder Streuung verloren geht), und aus dem Vergleich der beiden Gleichungen folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}^2 \Phi_{1\rightarrow2} = \mathrm{d}^2 \Phi_{2\leftarrow1} \ \Leftrightarrow \ L_1 = K_2 \,}

Die von Flächenelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A_1} ausgesandte Leuchtdichte ist identisch mit der auf Flächenelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}A_2} eintreffenden Beleuchtungsdichte.

Man beachte also, dass die Leuchtdichte nicht mit dem Abstand abnimmt. Der gesamte übertragene Lichtstrom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_{1\rightarrow2}} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_{2\rightarrow1}} nimmt hingegen wie erwartet mit dem Quadrat des Abstandes ab (aufgrund des Faktors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r^2} im Nenner beider Gleichungen), dies liegt daran, dass der von der Senderfläche aufgespannte Raumwinkel aus Sicht der Empfängerfläche quadratisch mit dem Abstand abnimmt.

Beispiel: Vergleicht man eine nahe Plakatwand mit einer identisch beleuchteten weiter entfernten, so erscheinen beide gleich „hell“ (sie haben eine abstandsunabhängige und daher in beiden Fällen identische Leuchtdichte). Die nähere Wand nimmt aber für den Beobachter einen größeren Raumwinkel ein, so dass den Beobachter aus diesem größeren Raumwinkel insgesamt ein größerer Lichtstrom erreicht. Die nähere Wand erzeugt eine größere Beleuchtungsstärke beim Beobachter (photometrisches Entfernungsgesetz).

Wird die Beleuchtungsdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} über den Raumwinkel integriert, aus dem sie stammt, so ergibt sich die Beleuchtungsstärke genannte Einstrahl-Lichtstromflächendichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} auf der Empfängerfläche in lm/m2. Falls die in eine bestimmte Richtung abgegebene Leuchtdichte der Senderfläche bekannt ist, so ist damit sofort auch die mit ihr identische aus derselben Richtung stammende Beleuchtungsdichte der Empfängerfläche bekannt und die Beleuchtungsstärke auf der Empfängerfläche kann aus der Leuchtdichteverteilung der Senderfläche sofort berechnet werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E = \frac{\mathrm{d}\Phi}{\mathrm{d}A} = \int_{\Omega} K(\beta, \varphi) \cdot \cos(\beta) \cdot \mathrm{d}\Omega = \int_{\Omega} L(\beta, \varphi) \cdot \cos(\beta) \cdot \mathrm{d}\Omega}

Beispiel: Die Sonne hat eine Leuchtdichte von L1 ≈ 1,5·109 cd/m2 und erscheint von der Erde aus gesehen unter einem Raumwinkel Ω = 6,8·10−5 sr. Da dieser Raumwinkel klein ist, kann man die Integration über den von der Sonnenscheibe eingenommenen Raumwinkel auf eine Multiplikation mit dem Raumwinkel reduzieren. Wenn im Sommer die Sonne auf 60° Höhe (also 30° von Zenit abweichend) steht, wird die Erde demnach mit E2 = L1 · Ω ·cos(30°) = 89 000 lx bestrahlt.

Radiometrische und photometrische Größen im Vergleich

radiometrische Größe Symbola) SI-Einheit Beschreibung photometrische Entsprechungb) Symbol SI-Einheit
Strahlungs­fluss
Strahlungs­leistung, radiant flux, radiant power
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_\mathrm{e}} W
(Watt)
Strahlungsenergie durch Zeit Lichtstrom
luminous flux
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_\mathrm{v}} lm
(Lumen)
Strahl­stärke
Strahlungs­stärke, radiant intensity
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_\mathrm{e}} W/sr Strahlungsfluss durch Raumwinkel Lichtstärke
luminous intensity
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_\mathrm{v}} cd = lm/sr
(Candela)
Bestrahlungs­stärke
irradiance
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_\mathrm{e}} W/m2 Strahlungsfluss durch Empfänger­fläche Beleuchtungs­stärke
illuminance
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_\mathrm{v}} lx = lm/m2
(Lux)
Spezifische Ausstrahlung
Ausstrahlungs­strom­dichte, radiant exitance
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{e}} W/m2 Strahlungsfluss durch Sender­fläche Spezifische Lichtausstrahlung
luminous exitance
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{v}} lm/m2
Strahldichte
Strahlungsdichte, Radianz, radiance
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L_\mathrm{e}} W/m2sr Strahlstärke durch effektive Senderfläche Leuchtdichte
luminance
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L_\mathrm{v}} cd/m2
Strahlungs­energie
Strahlungsmenge, radiant energy
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_\mathrm{e}} J
(Joule)
durch Strahlung übertragene Energie Lichtmenge
luminous energy
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_\mathrm{v}} lm·s
Bestrahlung
Einstrahlung, radiant exposure
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_\mathrm{e}} J/m2 Strahlungsenergie durch Empfänger­fläche Belichtung
luminous exposure
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_\mathrm{v}} lx·s
Strahlungs­ausbeute
radiant efficiency
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta_\mathrm{e}} 1 Strahlungsfluss durch auf­ge­nom­mene (meist elek­trische) Leistung Lichtausbeute
(overall) luminous efficacy
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta_\mathrm{v}} lm/W
a) Der Index „e“ dient zur Abgrenzung von den photo­metrischen Größen. Er kann weggelassen werden.
b) Die photometrischen Größen sind die radiometrischen Größen, gewichtet mit dem photo­metrischen Strahlungs­äquivalent K, das die Empfindlich­keit des menschlichen Auges angibt.

Siehe auch

Literatur

  • Hans R. Ris: Beleuchtungstechnik für Praktiker. 2. Auflage, VDE-Verlag GmbH, Berlin/Offenbach 1997, ISBN 3-8007-2163-5.
  • Wilhelm Gerster: Moderne Beleuchtungssysteme für drinnen und draußen. 1. Auflage, Compact Verlag, München 1997, ISBN 3-8174-2395-0.
  • Horst Stöcker: Taschenbuch der Physik. 4. Auflage, Verlag Harry Deutsch, Frankfurt am Main 2000, ISBN 3-8171-1628-4.
  • Günter Springer: Fachkunde Elektrotechnik. 18. Auflage, Verlag Europa-Lehrmittel, Wuppertal 1989, ISBN 3-8085-3018-9.

Einzelnachweise

  1. a b International Electrotechnical Commission (IEC): International Electrotechnical Vocabulary. ref. 845-21-050, Luminance (abgerufen am 16. Juni 2021).
  2. DIN 5031 Strahlungsphysik im optischen Bereich und Lichttechnik. Teil 3: Größen, Formelzeichen und Einheiten der Lichttechnik. DIN-Taschenbuch Einheiten und Begriffe für physikalische Größen, Beuth, Berlin 1990.
  3. DIN EN ISO 9288: Wärmeübertragung durch Strahlung – Physikalische Größen und Definitionen. Beuth Verlag, August 1996, für den analogen Fall der radiometrischen Strahldichte.
  4. Nach der Definition der Einheit Candela von 1946 bis 1979, siehe Candela#Geschichte
  5. Datenblatt Xenonstrahler (Memento des Originals vom 3. März 2016 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/assets.sylvania.com (PDF; 5,5 MB).
  6. DIN 5031 Strahlungsphysik im optischen Bereich und Lichttechnik. Teil 1: Größen, Formelzeichen und Einheiten der Lichttechnik. DIN-Taschenbuch Einheiten und Begriffe für physikalische Größen, Beuth, Berlin 1990.
  7. International Electrotechnical Commission (IEC): International Electrotechnical Vocabulary. ref. 845-25-088, basic law of radiometry and photometry (abgerufen am 4. Juni 2021).