Prisma (Geometrie)
Ein Prisma (Mehrzahl: Prismen) ist ein geometrischer Körper, der durch Parallelverschiebung eines ebenen Polygons entlang einer nicht in dieser Ebene liegenden Geraden im Raum entsteht. Man spricht auch von einer Extrusion des Vielecks. Ein Prisma ist damit ein spezielles Polyeder.
Das gegebene Polygon wird als Grundfläche bezeichnet, die gegenüberliegende Seitenfläche als Deckfläche. Die Gesamtheit aller übrigen Seitenflächen heißt Mantelfläche. Die Seitenkanten des Prismas, die Grundfläche und Deckfläche verbinden, sind zueinander parallel und alle gleich lang. Grundfläche und Deckfläche sind zueinander kongruent und parallel. Der Abstand zwischen Grundfläche und Deckfläche heißt Höhe des Prismas.
Gerades und schiefes Prisma
Erfolgt die Parallelverschiebung des Polygons senkrecht zur Grundfläche, spricht man von einem geraden Prisma, ansonsten von einem schiefen Prisma. Die Mantelfläche eines geraden Prismas besteht aus Rechtecken, im allgemeinen Fall besteht sie aus Parallelogrammen. Ein gerades Prisma mit einem regelmäßigen Polygon als Grundfläche wird als reguläres Prisma bezeichnet.
Der zu einem geraden Prisma duale Körper ist eine Doppelpyramide.
Reguläres Prisma
Ein gerades Prisma mit einem Regelmäßigen Vieleck als Grundfläche wird als reguläres Prisma bezeichnet. Alle regulären Prismen besitzen eine Umkugel, weil alle Ecken gleich weit vom Mittelpunkt entfernt sind. Der Würfel ist das einzige gleichseitige Prisma mit einer Inkugel.
dreieckiges Prisma
viereckiges Prisma
fünfeckiges Prisma
sechseckiges Prisma
siebeneckiges Prisma
achteckiges Prisma
neuneckiges Prisma
zehneckiges Prisma
elfeckiges Prisma
zwölfeckiges Prisma
Formeln
Größen eines regelmäßigen Prismas (regelmäßiges n-Eck mit Seitenlänge a als Grundfläche und Höhe h) | |||
---|---|---|---|
Allgemeiner Fall | Quadratisches Prisma | Regelmäßiges Dreiecksprisma | |
Grundfläche | |||
Volumen | |||
Oberflächeninhalt | |||
Umkugelradius | |||
Innenwinkel der regelmäßigen Grundfläche | |||
Winkel zwischen Grundfläche und Rechtecken | |||
Winkel zwischen den Rechtecken | |||
Raumwinkel in den Ecken | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{n - 2}{n} \cdot \pi \ \mathrm{sr}} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\pi}{2} \ \mathrm{sr}} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\pi}{3} \ \mathrm{sr}} |
Sonderfälle und Verallgemeinerung
Besondere Formen des Prismas sind die Quader und Würfel. Bei diesen kann jede Seite als Grundfläche des Prismas aufgefasst werden.
In der Optik versteht man unter einem Prisma meistens ein gerades Prisma mit einem Dreieck als Grundfläche, siehe Prisma (Optik).
Das Prisma ist in der Mathematik ein Spezialfall des allgemeinen Zylinders.
Symmetrie
Jedes Prisma mit einer punktsymmetrischen Grundfläche ist selbst punktsymmetrisch.
Formeln für Volumen, Mantelfläche und Oberfläche
Das Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} eines Prismas ist gegeben durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V = G \cdot h} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} den Flächeninhalt der Grundfläche und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h} die Höhe des Prismas bezeichnet. Aus dem Prinzip von Cavalieri folgt, dass zwei Prismen (etwa ein gerades und ein schiefes Prisma) bei gleicher Grundfläche und Höhe das gleiche Volumen besitzen.
Die Mantelfläche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} eines geraden Prismas ist gegeben durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M = U \cdot h} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U } für den Umfang der Grundfläche und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h} für die Höhe des Prismas steht.
Die gesamte Oberfläche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O} eines Prismas ergibt sich aus
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O = 2 \cdot G + M} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} dem Inhalt von Grundfläche und Mantelfläche entsprechen.
Umkugel
Nur gerade Prismen mit einer Grundfläche, welche einen Umkreis besitzt, haben eine Umkugel. Alle regulären Prismen und alle geraden Dreiecksprismen besitzen daher eine Umkugel. Der Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} der Umkugel bei gegebener Höhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h} und gegebenem Umkreisradius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} berechnet sich nach dem Satz des Pythagoras zu:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R = \sqrt{r^2 + \frac{h^2}{4}}}
Inkugel
Sowohl gerade wie auch schiefe Prismen können eine Inkugel haben.
Bei gegebener Höhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h} eines Prismas ergibt sich der Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} der Inkugel zu:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R = \frac{h}{2}}
Voraussetzung für die Existenz einer Inkugel:
- Es gibt eine gedachte Ebene, die senkrecht auf allen Parallelogrammen des Mantels steht. Der Schnitt dieser Ebene mit den Parallelogrammen ergibt ein Polygon.
- Das Polygon aus 1 besitzt einen Inkreis.
- Der Radius dieses Inkreises beträgt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h / 2} .
Kantenkugel
Nur gerade Prismen mit einem regelmäßigen Polygon als Grundfläche und gleicher Länge aller Kanten haben eine Kantenkugel. Der Mantel solcher Prismen wird also aus Quadraten gebildet. Bei gegebenem Umkreisradius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} ergibt sich der Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} der Kantenkugel zu:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R = r}
Siehe auch
Literatur
- Prisma. In: Meyers Großes Konversations-Lexikon. 6. Auflage. Band 16, Bibliographisches Institut, Leipzig/Wien 1908, S. 354.
- Bronstein-Semendjajew, Taschenbuch der Mathematik, 21./22. Aufl. 1981, S. 196.
Weblinks
- Prisma auf mathematische-basteleien.de
- Eric W. Weisstein: Prism. In: MathWorld (englisch).