Ringwoodit
Ringwoodit | |
---|---|
Bläulicher Ringwooditkristall (Größe ≈ 150 μm) | |
Allgemeines und Klassifikation | |
Andere Namen |
IMA 1968-036 |
Chemische Formel | |
Mineralklasse (und ggf. Abteilung) |
Silikate und Germanate – Inselsilikate (Nesosilikate) |
System-Nr. nach Strunz und nach Dana |
9.AC.15 (8. Auflage: VIII/A.06) 51.03.03.01 |
Kristallographische Daten | |
Kristallsystem | kubisch |
Kristallklasse; Symbol | kubisch-hexakisoktaedrisch; 4/m 3 2/m |
Raumgruppe | Fd3m (Nr. 227) |
Gitterparameter | a = 8,11 (synthetisch 8,17Å[5]) Å[2] |
Formeleinheiten | Z = 8[2] |
Physikalische Eigenschaften | |
Mohshärte | Bitte ergänzen |
Dichte (g/cm3) | berechnet: 3,90[6] |
Spaltbarkeit | Bitte ergänzen |
Farbe | farblos, violett, bläulich, rauchgrau |
Strichfarbe | Bitte ergänzen |
Transparenz | Bitte ergänzen |
Glanz | Bitte ergänzen |
Kristalloptik | |
Brechungsindex | n = 1,768[7] |
Doppelbrechung | keine, da optisch isotrop |
Ringwoodit ist die Hochdruck-Modifikation von Olivin und ein an der Erdoberfläche selten vorkommendes Mineral aus der Mineralklasse der „Silikate und Germanate“. Es kristallisiert im kubischen Kristallsystem mit der idealisierten chemischen Zusammensetzung Mg2(SiO4),[4] ist also ein Magnesium-Silikat. Strukturell gehört Ringwoodit zu den Inselsilikaten sowie zur Supergruppe der Spinelle mit der für Spinelle normierten Formelschreibweise SiMg2O4[1].
Aufgrund von Mischkristallbildung zwischen den Mineralen der Olivingruppe wird die Formel für den Ringwoodit oft auch als Mischformel mit (Mg,Fe)2[SiO4] angegeben. In der Natur überwiegen Mg-reiche Mischkristalle; γ-Fe2(SiO4) wurde erst kürzlich in natürlichen Proben nachgewiesen und wird daher seit 2013 als Ahrensit bezeichnet.
Ringwoodit ist durchscheinend und konnte bisher nur in Form von abgerundeten Körnern bis etwa 100 Mikrometer Größe und massigen Mineral-Aggregaten gefunden werden. In reiner Form ist Ringwoodit farblos. Durch Fremdbeimengungen kann er aber auch eine violette, bläuliche oder rauchgraue Farbe annehmen.
Etymologie und Geschichte
Erstmals entdeckt wurde Ringwoodit in Mineralproben des „Tenham-Meteoriten“, der 1879 bei South Gregory im australischen Bundesstaat Queensland niederging. Beschrieben wurde das Mineral 1969 durch R. A. Binns, R. J. Davis und S. J. B. Reed, die das Mineral nach dem australischen Experimental-Geophysiker und Geochemiker Alfred Edward Ringwood (1930–1993) benannten.
Das eisenhaltige Analogon zu Ringwoodit, Ahrensit, wurde 2013 nach dem US-amerikanischen Mineralphysiker Thomas J. Ahrens (1936–2010) benannt.
Klassifikation
Die aktuelle Klassifikation der International Mineralogical Association (IMA) zählt den Ringwoodit zur Spinell-Supergruppe, wo er zusammen mit Ahrensit, Brunogeierit, Filipstadit, Qandilit, Tegengrenit und Ulvöspinell die Ulvöspinell-Untergruppe innerhalb der Oxispinelle bildet.[8]
In der veralteten, aber teilweise noch gebräuchlichen 8. Auflage der Mineralsystematik nach Strunz gehörte der Ringwoodit zur Mineralklasse der „Silikate und Germanate“ und dort zur Abteilung der „Inselsilikate (Nesosilikate)“, wo er zusammen mit Wadsleyit die unbenannte Gruppe VIII/A.06 bildete.
Die seit 2001 gültige und von der IMA verwendete 9. Auflage der Strunz’schen Mineralsystematik ordnet den Ringwoodit ebenfalls in die Abteilung der „Inselsilikate (Nesosilikate)“ ein. Diese ist allerdings weiter unterteilt nach der möglichen Anwesenheit weiterer Anionen und der Koordination der beteiligten Kationen, so dass das Mineral entsprechend seiner Zusammensetzung in der Unterabteilung „Inselsilikate ohne zusätzliche Anionen; Kationen in oktaedrischer [6]er-Koordination“ zu finden ist, wo es als einziges Mitglied die unbenannte Gruppe 9.AC.15 bildet.
Auch die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Ringwoodit in die Klasse der „Silikate und Germanate“ und dort in die Abteilung der „Inselsilikatminerale“ ein. Hier ist er als einziges Mitglied in der unbenannten Gruppe 51.03.03 innerhalb der Unterabteilung „Inselsilikate: SiO4-Gruppen mit allen Kationen nur in oktaedrischer [6]-Koordination“ zu finden.
Kristallstruktur
Ringwoodit kristallisiert kubisch in der Raumgruppe Fd3m (Raumgruppen-Nr. 227) mit dem Gitterparameter a = 8,11 Å (in synthetischer, chemisch reiner Form 8,17 Å[5]) sowie 8 Formeleinheiten pro Elementarzelle.[2] Das Kristallgitter hat die Struktur von Spinell, weshalb Ringwoodit bzw. γ-Olivin besonders in der geophysikalischen Literatur mitunter auch als „Spinell“ bezeichnet wird.
Modifikationen und Varietäten
Die Verbindung Mg2(SiO4)[4] ist trimorph und kommt in der Natur neben dem kubischen Ringwoodit noch als orthorhombisch kristallisierender Forsterit und als ebenfalls orthorhombisch, jedoch in anderer Raumgruppe kristallisierender Wadsleyit vor.
Bildung und Fundorte
Als Hochdruck-Modifikation des Olivinminerals Forsterit ist Ringwoodit im Erdmantel ab etwa einer Tiefe von 520 km (520-km-Diskontinuität) stabil. In Steinmeteoriten (Chondriten) entsteht das Mineral dagegen durch Impaktmetamorphose (Stoßwellen-Metamorphose), wenn das Material während des Aufschlags stark gestaucht und dabei hohen Drücken und Temperaturen ausgesetzt ist. Dabei ist das Auftreten von Ringwoodit einer von mehreren Indikatoren für die Schockstufe S6 nach der Stöffler-Keil-Scott-Skala.[9] Bei noch stärkeren Schockereignissen wird der Meteorit weitgehend aufgeschmolzen, und es bildet sich eine Impaktschmelze, nach deren Erstarrung keine Hochdruckphasen mehr nachweisbar sind.
Im Tenham-Meteoriten wurde Ringwoodit in kleinen, die Grundmasse des Meteoriten durchschneidenden Äderchen gefunden, die durch die Brekziierung beim Aufschlag des Meteoriten entstanden. Als Begleitminerale fanden sich Majorit, magnesiumhaltiges Silikatglas sowie die ebenfalls erstmals im enham-Meteoriten entdeckten Minerale Akimotoit und Bridgmanit. Der 1966 ebenfalls in Australien bei Rawlinna in Western Australia niedergegangener Chondrit Coorara enthielt ebenfalls Ringwoodit und Majorit (Magnesium-Eisen–Granat).
Weitere bisher bekannte Fundorte, in denen Meteoriten mit Ringwoodit niedergingen, sind unter anderem die Grove Mountains auf dem Amerikanischen Hochland in der Antarktis, Pampa del Infierno im argentinischen Departamento Almirante Brown, Sui und Gaogang in China, der Peace River und Catherwood (Provinz Saskatchewan) in Kanada, Munizip al-Dschabal al-Gharbi in Libyen, Dhofar im Oman sowie mehrere Countys in New Mexico und Umbarger im texanischen Randall County in den Vereinigten Staaten von Amerika.[10]
In China konnte Ringwoodit zudem in einem Basaltfeld nahe Hannuoba im Kreis Wanquan (Hebei) nachgewiesen werden.[11]
Bei Untersuchungen an einem brasilianischen Fund wurde Mantelmaterial mit Ringwoodit als Einschluss innerhalb eines Diamanten gefunden.[12] Untersuchungen in den USA erhärteten die Hypothese, dass sich im Erdmantel große Mengen von in Ringwoodit enthaltenem Hydroxid befinden könnten.[13]
Siehe auch
Literatur
- R. A. Binns, R. J. Davis, S. J. B. Reed: Ringwoodite, natural (Mg,Fe)2SiO4 spinel in the Tenham meteorite. In: Nature. Band 221, 8. März 1969, S. 943–944, doi:10.1038/221943a0.
- Michael Fleischer: New mineral names. Ringwoodite. In: American Mineralogist. Band 54, 1969, S. 1218–1223 (rruff.info [PDF; 379 kB; abgerufen am 3. Januar 2017]).
- L. C. Coleman: Ringwoodite and majorite in the Catherwood meteorite. In: The Canadian Mineralogist. Band 15, 1977, S. 97–101 (rruff.info [PDF; 772 kB; abgerufen am 3. Januar 2017]).
- Friedrich Klockmann: Klockmanns Lehrbuch der Mineralogie. Hrsg.: Paul Ramdohr, Hugo Strunz. 16. Auflage. Enke, Stuttgart 1978, ISBN 3-432-82986-8, S. 665 (Erstausgabe: 1891).
Weblinks
- Mineralienatlas: Ringwoodit (Wiki)
- David Barthelmy: Ringwoodite Mineral Data. In: webmineral.com. Abgerufen am 16. Juni 2019 (englisch).
- Ringwoodite search results. In: rruff.info. Database of Raman spectroscopy, X-ray diffraction and chemistry of minerals (RRUFF), abgerufen am 16. Juni 2019 (englisch).
- American-Mineralogist-Crystal-Structure-Database – Ringwoodite. In: rruff.geo.arizona.edu. Abgerufen am 16. Juni 2019 (englisch).
Einzelnachweise
- ↑ a b Malcolm Back, William D. Birch, Michel Blondieau und andere: The New IMA List of Minerals – A Work in Progress – Updated: March 2019. (PDF 1703 kB) In: cnmnc.main.jp. IMA/CNMNC, Marco Pasero, März 2019, abgerufen am 16. Juni 2019 (englisch).
- ↑ a b c Hugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. Chemical-structural Mineral Classification System. 9. Auflage. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S. 539.
- ↑ Stefan Weiß: Das große Lapis Mineralienverzeichnis. Alle Mineralien von A – Z und ihre Eigenschaften. Stand 03/2018. 7., vollkommen neu bearbeitete und ergänzte Auflage. Weise, München 2018, ISBN 978-3-921656-83-9.
- ↑ a b c Malcolm Back, William D. Birch, Hans-Peter Bojar und andere: The New IMA List of Minerals – A Work in Progress – Updated: January 2014. (PDF 1602 kB) In: cnmnc.main.jp. IMA/CNMNC, Marco Pasero, März 2019, abgerufen am 16. Juni 2019 (englisch).
- ↑ a b W. H. Baur: Computer-simulated crystal structures of observed and hypothetical Mg2SiO4. In: American Mineralogist. Band 57, 1972, S. 709–731 (arizona.edu [TXT; abgerufen am 3. Januar 2017]).
- ↑ Ringwoodite. In: John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America. 2001 (handbookofmineralogy.org [PDF; 64 kB; abgerufen am 3. Januar 2017]).
- ↑ Ringwoodite. In: mindat.org. Hudson Institute of Mineralogy, abgerufen am 16. Juni 2019 (englisch).
- ↑ Ferdinando Bosi, Cristian Biagioni, Marco Pasero: Nomenclature and classification of the spinel supergroup. In: European Journal of Mineralogy. Band 31, Nr. 1, 12. September 2018, S. 183–192, doi:10.1127/ejm/2019/0031-2788 (englisch).
- ↑ O. R. Norton: The Cambrigde Encyclopedia of Meteorites. Cambridge University Press, Cambridge 2002, ISBN 0-521-62143-7, S. 93–95.
- ↑ Fundortliste für Ringwoodit beim Mineralienatlas und bei Mindat
- ↑ Mindat – Fundort Hannuoba basalt field, Wanquan Co., Zhangjiakou Prefecture, Hebei Province, China (Quelle: Hongsen Xie, Huifen Zhang, Yueming Zhang, Huigang Xu, Shijie Zhuang: High-pressure hydrous mineral association in Hannuoba lherzolite. In: Acta Mineralogica Sinica. Band 4, Nr. 4, 1984, S. 289–295, doi:10.1007/BF02864872. )
- ↑ Mineralwasser im Erdkern basiert auf: Hydrous mantle transition zone indicated by ringwoodite included within diamond
- ↑ wissenschaft.de: Wasser im Erdmantel bestätigt