Satz von Paley

aus Wikipedia, der freien Enzyklopädie

Der Satz von Paley, benannt nach dem englischen Mathematiker Raymond Paley, ist ein mathematischer Lehrsatz über die Konstruktion von Hadamard-Blockplänen mit Hilfe der Methoden der Gruppentheorie. Er liegt als solcher im Übergangsfeld von Kombinatorik, Geometrie und Algebra.[1][2][3][4][5]

Blockpläne, welche nach dem Satz von Paley konstruierbar sind, werden manchmal auch als Paley-Blockpläne (engl. Paley designs) bzw. Paley-Hadamard-2-Blockpläne (engl. Paley-Hadamard 2-designs) bezeichnet.[6][7]

Formulierung des Satzes

Für eine Primzahlpotenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q} der Gestalt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q=4n-1} [8] zu einer natürlichen Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \geq 2} gilt stets:

(I) Es existiert ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\text{-}(4n-1,2n-1,n-1)} -Blockplan, also ein symmetrischer Blockplan mit den Parametern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t = 2} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v=b=q} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k=2n-1 = \tfrac{q-1}{2}} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda=n-1=\tfrac{q-3}{4}} .
(II) Die zugehörige Inzidenzstruktur lässt sich dabei in folgender Weise konstruieren:
  1. Den zu gehörenden Galois-Körper wählt man als Punktmenge von ; das heißt man wählt , also die Körperelemente als die Punkte der Inzidenzstruktur.
  2. Für die Konstruktion des Blocksystems geht man aus von der multiplikativen Gruppe des Galoiskörpers und betrachtet hier die Untergruppe der Quadrate , also . Dann setzt man .
  3. Die Inzidenzrelation ist die Elementrelation, also .

Beispiele von Paley-Blockplänen

Die beiden kleinsten Beispiele von Paley-Blockplänen sind diejenigen für die beiden Primzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q=7} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q = 11} .[9]

So ergibt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q = 7} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K = \operatorname{GF}(7)} der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\text{-}(7,3,1)} -Blockplan, dessen geometrische Struktur der der Fano-Ebene entspricht. Die oben beschriebene Untergruppe der Quadrate von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{GF}(7)} ist .[10][11]

Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q=11} ergibt sich auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K = \operatorname{GF}(11)} der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\text{-}(11,5,2)} -Blockplan. Die Untergruppe der Quadrate von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{GF}(11)} ist hier Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U = \{ 1,3,4,5,9 \}} .

Weitere Beispiele ergeben sich aus anderen Artikeln der Kategorie:Blockplan:

Anmerkungen zum Beweis des Satzes

Der Beweis des Satzes von Paley lässt sich führen mit Hilfe der Ungleichung von Fisher und der Tatsache, dass eine spezielle Permutationsgruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma \leq S_K} existiert, welche 2-fach homogen auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} operiert.

Wie sich nämlich zeigt, lässt sich so das Blocksystem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{B}} auch noch auf andere Weise beschrieben, nämlich als Menge der -Bilder von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U } über alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma \in \Gamma} , also in der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{B} = \{ \gamma (U) \mid \gamma \in \Gamma \}} .

Man gewinnt die Permutationsgruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma} dabei aus der obigen Untergruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U \leq K^{\times}} , indem man diejenigen Permutationen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma\colon K \to K} betrachtet, welche die Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \mapsto \gamma(x)= ux + a} haben, wobei und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in K} fest gewählte Elemente sind. All diese Permutationen, versehen mit der üblichen Verkettung, bilden dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma} .

Es lässt sich nun zeigen, dass die Untergruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} die Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} hat, während sich für die Permutationsgruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma} die Ordnung ergibt. Also hat Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma} ungerade Ordnung und enthält nach dem Satz von Lagrange kein Element der Ordnung 2. Daher ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -1 \notin U} , woraus dann die 2-fache Homogenität von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma} folgt.[12]

Verwandtes Resultat

Auf Raymond Paley geht ein weiteres Resultat über Hadamard-Blockpläne zurück:[13][14]

Zu jeder Primzahlpotenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q} der Gestalt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q=4n+1}   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (n \in \N)} existiert ein Hadamard-Blockplan mit den Parametern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t = 2} , , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k=q} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda=2n} , also ein symmetrischer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\text{-}(8n+3,4n+1,2n)} -Blockplan.

Aus diesem Resultat ergibt sich beispielsweise die Existenz folgender Hadamard-Blockpläne:

Literatur

  • Thomas Beth, Dieter Jungnickel, Hanfried Lenz: Design Theory. Bibliographisches Institut, Mannheim / Wien / Zürich 1985, ISBN 3-411-01675-2.
  • Albrecht Beutelspacher: Einführung in die endliche Geometrie I. Blockpläne. Bibliographisches Institut, Mannheim / Wien / Zürich 1982, ISBN 3-411-01632-9. MR0670590
  • Peter Dembowski: Finite Geometries (= Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 44). Springer Verlag, Berlin / Heidelberg / New York 1968.
  • Daniel R. Hughes, Fred C. Piper: Design Theory. Cambridge University Press, Cambridge u. a. 1985, ISBN 0-521-25754-9.
  • Konrad Jacobs, Dieter Jungnickel: Einführung in die Kombinatorik (= de Gruyter Lehrbuch). 2., völlig neu bearbeitete und erweiterte Auflage. de Gruyter, Berlin u. a. 2004, ISBN 3-11-016727-1.
  • Heinz Lüneburg: Kombinatorik (= Elemente der Mathematik vom höheren Standpunkt aus. Band 6). Birkhäuser Verlag, Basel / Stuttgart 1971, ISBN 3-7643-0548-7. MR0335267
  • R. E. A. C. Paley: On orthogonal matrices. In: J. Math. Phys. Mass. Inst. Tech. Band 12, 1933, S. 311–320.

Einzelnachweise und Anmerkungen

  1. A. Beutelspacher: Einführung in die endliche Geometrie. 1982, S. 104–108.
  2. H. Lüneburg: Kombinatorik. 1971, S. 75 ff.
  3. T. Beth, D. Jungnickel, H. Lenz: Design Theory. 1985, S. 70 ff., 262, 264.
  4. D. R. Hughes, F. C. Piper: Design Theory. 1985, S. 107 ff.
  5. K. Jacobs, D. Jungnickel: Einführung in die Kombinatorik. 2004, S. 251 ff.
  6. P. Dembowski: Finite Geometries. 1968, S. 97.
  7. D. R. Hughes, F. C. Piper: Design Theory. 1985, S. 107, 180.
  8. Also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q \equiv 3 \pmod 4} .
  9. T. Beth, D. Jungnickel, H. Lenz: Design Theory. 1985, S. 262, 264.
  10. Wegen der Unterschiede in der Darstellung in dem zugehörigen Hauptartikel beachte man den Hinweis auf den Singer-Zyklus.
  11. Auch alle Primzahlpotenzen der Gestalt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q = p^{2j+1}}   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (j= 0,1,2,3, \dots), q \geq 7 } , mit einer Basisprimzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \equiv 3 \pmod 4} liefern stets Paley-Blockpläne. So sieht man etwa für , also für die Primzahlpotenzen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q = 27,243,2187, \dots}  , dass ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\text{-}(27,13,6)} -Blockplan, ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\text{-}(243,121,60)} -Blockplan und auch ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\text{-}(2187,1093,546)} -Blockplan existiert. Siehe auch
  12. Der wesentliche Beweisschritt besteht hier darin zu zeigen, dass allein die identische Abbildung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} eine beliebige 2-elementige Teilmenge festlässt, dass also für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma \in \Gamma} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{x,y\} \subset K}   die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma (\{x,y\}) = \{x,y\}} stets nach sich zieht; s. A. Beutelspacher: Einführung in die endliche Geometrie. 1982, S. 106. Und auch H. Lüneburg: Kombinatorik. 1971, S. 79.
  13. K. Jacobs, D. Jungnickel: Einführung in die Kombinatorik. 2004, S. 252.
  14. T. Beth, D. Jungnickel, H. Lenz: Design Theory. 1985, S. 70–72.