Strahlungsdruck
Der Strahlungsdruck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_\mathrm{St}} oder Lichtdruck ist der Druck, der durch absorbierte, emittierte oder reflektierte elektromagnetische Strahlung auf eine Fläche wirkt.
Bei Absorption und Emission ist der Strahlungsdruck gleich der Intensität der Welle, auch Bestrahlungsstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_\mathrm e} genannt, dividiert durch die Lichtgeschwindigkeit :[1]
mit den Einheiten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[ p_\mathrm{St} \right] = \frac{\mathrm{N}} {\mathrm{m}^2} = \frac{\mathrm{Nm}} {\mathrm{m}^3} = \frac{\mathrm{J}} {\mathrm{m}^3} = \mathrm{Pa}} (Pascal);
bei vollständiger Reflexion ist der Strahlungsdruck doppelt so groß wie bei vollständiger Absorption.
Geschichte und Nachweis
Dass Licht einen Druck ausübt, wurde von Johannes Kepler als Erklärung für stets von der Sonne weg gerichtete Kometenschweife postuliert.[2] James Clerk Maxwell leitete 1873 aus den Maxwellschen Gleichungen im Rahmen der Elektrodynamik ab, dass elektromagnetische Wellen einen Druck auf Körper ausüben können.[3] Er zeigte bereits, dass der Strahlungsdruck senkrecht einfallender elektromagnetischer Wellen gleich der volumetrischen Energiedichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w} der auftreffenden Wellen ist:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_\mathrm{St} = w}
1876 leitet Adolfo Bartoli die Existenz des Strahlungsdrucks aus thermodynamischen Überlegungen ab. Er argumentierte, dass durch Reflexion des Lichts bei einem bewegten Spiegel aufgrund des Dopplereffektes Wärme von einem kalten auf den heißen Körper übertragen werden könne. Um diese Verletzung des zweiten Hauptsatzes der Thermodynamik zu vermeiden, ist es notwendig, dass das Licht einen Druck auf den Spiegel ausübt.[4] Der Strahlungsdruck wurde deshalb früher nach seinen Entdeckern auch Maxwell-bartolischer Druck genannt.
Die ersten experimentellen Bestätigungen kamen von Pjotr Nikolajewitsch Lebedew (1901)[5] und von Ernest Fox Nichols und Gordon Ferrie Hull (1903).[6] Der Physiker Arthur Ashkin bestrahlte 1972 kleine Plastikkügelchen mit Laserlicht und konnte unter dem Mikroskop eine Bewegungsänderung beobachten.
Erklärung
Die elektromagnetische Strahlung kann sowohl als Strom von Photonen als auch als elektromagnetische Welle betrachtet werden. Aus beiden Modellen kann der Strahlungsdruck abgeleitet werden.
Teilchenmodell
Ein Photon der Frequenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} transportiert die Energie
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E = h \cdot \nu} (siehe Photoelektrischer Effekt)
mit dem Planckschen Wirkungsquantum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h} . Aufgrund der Energie-Impuls-Relation
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E = \sqrt{\vec p^2 c^2 + m^2 c^4}}
folgt für das Photon mit einer Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m=0} ein Impuls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec p} mit dem Betrag:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left| \vec p \right| = h \cdot \frac{\nu}{c}}
Die Richtung des Impulses ist die Bewegungsrichtung des Photons. Der Gesamtimpuls bleibt bei Absorption, Emission und Reflexion erhalten, d. h. die interagierende Fläche erfährt eine Impulsänderung in der entsprechenden Richtung. Mehrere Photonen, d. h. ein Photonenstrom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm dN}{\mathrm dt}} mit der Teilchenzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} , verursachen bei Absorption eine Impulsänderung pro Zeiteinheit, also eine Kraft, von
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm d \left| \vec p \right|}{\mathrm dt} = \frac{h \cdot \nu}{c}\cdot \frac{\mathrm dN}{\mathrm dt}}
Wirkt diese Kraft unter dem Einfallswinkel zur Flächennormalen auf ein Flächenelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm dA} , erzeugt sie den Druck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_{\mathrm{St}}} von
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_{\mathrm{St}} = \cos \theta \cdot \frac{\mathrm d \left| \vec p\right|}{\mathrm dt \cdot \mathrm dA} = \frac{h \cdot \nu \cdot \cos \theta }{c}\cdot \frac{\mathrm dN}{\mathrm dt \cdot \mathrm dA} = \frac{1}{c} \cdot \frac{\mathrm d \Phi_e}{\mathrm dA} = \frac{E_e}{c}}
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_e} der Strahlungsfluss ist. Ein reflektiertes Photon nimmt einen Impuls vom selben Betrag wieder mit, sodass sich im Fall der Reflexion der doppelte Impulsübertrag auf die interagierende Fläche und damit der doppelte Strahlungsdruck ergibt.
Wellenmodell
Der Druck, den ein Strahlungsfeld im Vakuum auf eine Oberfläche ausübt, lässt sich durch den Maxwellschen Spannungstensor Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle (T_{ij})} ausdrücken. Bei einer absorbierenden Fläche mit Normalenvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec n} ist der Strahlungsdruck gegeben durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_\mathrm{St}\, n_j=\sum_{i=1}^3 T_{ij} n_i}
Die Komponenten des Maxwellschen Spannungstensors lassen sich dabei aus der elektrischen Feldstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec E} und der magnetischen Flussdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec B} berechnen:
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_{ij}} das Kronecker-Delta, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon_0} die Elektrische Feldkonstante und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_0} die Magnetische Feldkonstante ist.
Eine ausführlichere Erklärung auf Basis der Maxwellschen Gleichungen findet sich z. B. in Jay Orear: Physik: Band 2.[7]
Anwendung
Die Solarkonstante beträgt ca. 1370 W/m². Daraus resultiert ein Solar-Strahlungsdruck (engl. solar radiation pressure, SRP) bei Absorption von ca. 4,6 μPa. Bei senkrechter Reflexion ist er doppelt so groß. Es gibt seit längerer Zeit Ideen, dies mit Sonnensegeln als Antrieb für interplanetare Raumflugkörper zu benutzen.
Realistischer ist die Erzeugung von Ionenstrahlen etwa für medizinische Anwendungen durch den Strahlungsdruck kurzer Laserpulse auf ultradünne Folien.[8] Ab einer Strahlungsintensität von etwa 1022 W/cm² in zirkularer Polarisation überwiegt der Strahlungsdruck den von der Trägheitsfusion bekannten Rückstoßeffekt und erzeugt hochenergetische Ionen mit engerer Energie- und Winkelverteilung.[9]
Die Funktion der Lichtmühlen beruht dagegen nicht auf dem Strahlungsdruck. Dies erkennt man an der Drehrichtung: die reflektierende Seite der Flügel ist einem höheren Strahlungsdruck ausgesetzt als die geschwärzte, dennoch dreht sich die Mühle genau andersherum.
Astrophysik
In der Astrophysik spielt der Strahlungsdruck eine bedeutende Rolle bei der Erklärung der Dynamik von Sternen und interstellaren Wolken.
Der Schweif von Kometen wird zu einem wesentlichen Teil durch den Strahlungsdruck hervorgerufen, der Bestandteile der Koma „wegweht“. So zeigt dieser immer von der Sonne weg, egal in welche Richtung der Komet fliegt.
Einzelnachweise
- ↑ Eugene Hecht: Optik. Oldenbourg Wissenschaftsverlag, 2005, S. 100
- ↑ Johannes Kepler: De Cometis Libelli Tres. 1619.
- ↑ J.C Maxwell: A Treatise on electricity and magnetism, Vol. 2, § 792. Macmillan & Co., London 1873, S. 391 (englisch): “Hence in a Medium in which waves are propagated there is a pressure in the direction normal to the wave, and numerically equal to the energy in unit of volume”
- ↑ A. Bartoli: Il calorico raggiante e il secondo principio di termodynamica. In: Nuovo Cimento. Band 15 (1876/1884), S. 196–202 (italienisch).
- ↑ Pjotr Nikolajewitsch Lebedew: Untersuchungen über die Druckkräfte des Lichtes. In: Annalen der Physik. Band 6, 1901, S. 433–458.
- ↑ Ernest Fox Nichols, Gordon Ferrie Hull: Über Strahlungsdruck. In: Annalen der Physik. Band 12, 1903, S. 225–263.
- ↑ Jay Orear: Physik: Band 2. Carl Hansen Verlag, München/Wien 1991, ISBN 3-446-17976-3
- ↑ Tim Arniko Meinhold, Naveen Kumar: Radiation pressure acceleration of protons from structured thin-foil targets. In: Journal of Plasma Physics. Band 87, Nr. 6, Dezember 2021, ISSN 0022-3778, S. 905870607, doi:10.1017/S0022377821001070 (cambridge.org [abgerufen am 1. Dezember 2021]).
- ↑ Peter Schmidt, Oliver Boine-Frankenheim, Peter Mulser: Optimum laser parameters for 1D radiation pressure acceleration. Laser and Particle Beams, 2015, doi:10.1017/S0263034615000336, und darin zitierte Arbeiten ab etwa 2008.