Weißes Rauschen
Weißes Rauschen ist ein Rauschen mit einem konstanten Leistungsdichtespektrum in einem bestimmten Frequenzbereich. Weißes Rauschen wird als ein stark höhenbetontes Geräusch empfunden (vgl. Psychoakustik). Weißes, in der Bandbreite beschränktes Rauschen wird in den Ingenieur- und Naturwissenschaften häufig verwendet, um Störungen in einem sonst idealen Modell abzubilden, z. B. zufällige Störungen in einem Übertragungskanal zu beschreiben.
Beschreibung
Charakteristisch für weißes Rauschen ist ein konstantes Leistungsdichtespektrum:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S(f) = \text{const.}}
Nach dem Wiener-Chintschin-Theorem ist die Autokorrelationsfunktion des weißen Rauschens Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta(t)} daher die Delta-Distribution:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_{\eta \eta}(\tau) := \operatorname{E}[\eta(t)\eta(t-\tau)] =\int_{-\infty}^\infty S(f) e^{\mathrm{j}2\pi f\tau} d f = \text{const} \cdot \delta(\tau).}
Die Autokorrelationsfunktion von weißem Rauschen ist ein Dirac-Impuls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta(\tau)\overset{t':=t-\tau}{=}\delta(t-t')} . Das heißt, das Rauschen zu einem bestimmten Zeitpunkt ist unkorreliert zu allen anderen Zeitpunkten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t'\neq t} , da für diese Zeitpunkte die Autokorrelation Null ist.
Weißes Rauschen werden auch zeitdiskrete Signale genannt, deren einzelne Abtastwerte unkorreliert sind.
In der Bandbreite unlimitiertes weißes Rauschen ist ein modellhafter Grenzfall mit unendlich hoher Leistung und tritt daher in der Praxis nicht auf. In realen Systemen tritt weißes Rauschen immer nur in einem Frequenzbereich mit in diesem Bereich konstantem Leistungsdichtespektrum auf. Das Leistungsdichtespektrum außerhalb dieser Bandbreite fällt nach oben hin, bei nur hinreichend hohen Frequenzen, immer gegen 0 ab.
Weißes Rauschen kann mit unterschiedlichen Wahrscheinlichkeitsverteilungen der Signalamplitude auftreten. Eine übliche Verteilung ist die Normalverteilung oder auch Gauß-Verteilung, welche im Rahmen der Signalverarbeitung zur Beschreibung der Störungen von Übertragungskanälen dient. Bei diesen Kanälen wird das Rauschen als additive Störgröße mit eingebracht und dann als additives weißes gaußsches Rauschen bezeichnet. Auch thermisches Rauschen an elektrischen Widerständen lässt sich primär durch weißes gaußsches Rauschen beschreiben. Weißes Rauschen kann grundsätzlich aber auch in anderen Verteilungen auftreten, beispielsweise in Cauchy- oder Poisson-Verteilung.
Mathematische Beschreibung
Weißes Rauschen in diskreter Zeit
Ein diskreter stochastischer Prozess Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_t)} auf einem Wahrscheinlichkeitsraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega,\mathcal{A},\mathbb{P})} heißt diskretes weißes Rauschen falls für alle
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{E}[X_t]=0,\quad \mathbb{E}[X_t^2]=\sigma^2<\infty,\quad \operatorname{Cov}(X_t,X_s)=0\quad s\neq t}
Weißes Rauschen in stetiger Zeit
Weißes Rauschen ist eine stochastische Distribution.
Gaußsches weißes Rauschen als Zufallsmengenfunktion
Sei Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle (S,{\mathcal {S}},\nu )} ein σ-endlicher Maßraum. Dann nennt man eine Zufallsmengenfunktion auf den Mengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{A:A\in \mathcal{S}, \nu(A)<\infty\}} weißes Rauschen basierend auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} wenn folgendes gilt[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W(A)\sim \mathcal{N}(0,\nu(A))} , d. h. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W(A)} ist eine zentrierte Gaußsche Zufallsvariable mit Varianz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu(A)} .
- Falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\cap B=\emptyset} , dann sind und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W(B)} unabhängig und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W(A\cap B)=W(A)+W(B).}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (W(A))_{A\in \mathcal{S}}} ist ein Prozess. Aus der Definition folgt sofort, dass die Kovarianzfunktion durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C(A,B)=\mathbb{E}[W(A)W(B)]=\nu(A\cap B)}
gegeben ist. Üblicherweise wählt man für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} das Lebesgue-Maß und und die Borelsche σ-Algebra für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{S}} .
Für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} gibt es ein korrespondierendes brownsches Blatt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (B_t, t\in \mathbb{R}^{d+1}_+)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (0,t]=(0,t_1]\times \cdots \times (0,t_{d+1}]} und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_t=W\left((0,t]\right).}
Raumzeitliches gaußsches weißes Rauschen
Sei Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle S\subset \mathbb {R} ^{d}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D:=\mathbb{R}_+\times S} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (B_{t,x}, (t,x)\in D)} ein brownsches Blatt. Dann ist das raumzeitliche (gaußsche) weiße Rauschen (englisch space-time white noise) die Distributionalableitung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{t,x}} definiert für eine Testfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi\in C_c^{\infty}(D)} durch[2]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot W[\phi]=\int \int_S \phi(t,x)\frac{\partial^2 B(t,x)}{\partial t \partial x}\mathrm{d}t\mathrm{d}x= \int \int_S B(t,x)\frac{\partial^2 \phi(t,x)}{\partial t \partial x}\mathrm{d}t\mathrm{d}x.}
Da sich jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{t,x}} durch ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W_{t,x}:=W((0,t]\times (0,x])} ersetzen lässt, erklärt sich die Notation. Aus der Definition folgt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{E}[\dot W[\phi]]=0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Cov}[\dot W(t,x),\dot W(s,y)]=\delta(t-s)\prod\limits_{i=1}^n\delta(x_i-y_i)} .
Anwendungsbereiche
In der Psychoakustik wird weißes Rauschen zur Lärmbekämpfung und im Bereich der Tinnitus-Retraining-Therapie als Masker eingesetzt; Lärm und andere Störgeräusche werden subjektiv als weniger laut und störend empfunden, wenn man sie mit weißem Rauschen überlagert. Rauschen, in dem sich alle Frequenzanteile in etwa gleich laut anhören, wird als 1/f-Rauschen bezeichnet. Es hat ein mit der Frequenz abnehmendes Leistungsdichtespektrum.
In der Stochastik bezeichnet weißes Rauschen in diskreter Zeit einen diskreten stochastischen Prozess von unkorrelierten Zufallsvariablen mit Erwartungswert 0 und konstanter Varianz. Es ist schwach stationär und hat eine konstante Spektraldichte. Das weiße Rauschen stellt den einfachsten stochastischen Prozess dar, jedoch werden viele komplexere Prozesse und Zeitreihen aus solchen konstruiert, etwa der Random Walk oder ARMA-Prozesse.
Farbanalogie des Namens
Der Begriff Weißes Rauschen ist in Analogie zu weißem Licht zu verstehen, in welchem verschiedene optische Frequenzanteile sich zu einem weißen Farbeindruck überlagern. Allerdings weist vom Menschen subjektiv als weiß empfundenes Licht kein konstantes Leistungsdichtespektrum auf.
Mit einer vergleichbaren Farbanalogie wurden die Begriffe Rotes Rauschen und Rosa Rauschen gebildet.
Literatur
- Rudolf Müller: Rauschen. 2. Auflage. Springer, 2013, ISBN 978-3-540-51145-8.
- Horst Stöcker (Hrsg.): Taschenbuch der Physik. Formeln, Tabellen, Übersichten. 4. Auflage. Harry Deutsch, 2000, ISBN 3-8171-1628-4.
- Gopinath Kallianpur: White Noise Theory of Prediction, Filtering and Smoothing. CRC Press Inc., 1988, ISBN 978-2-88124-685-2.
Einzelnachweise
- ↑ Walsh, John B.: An introduction to stochastic partial differential equations. Hrsg.: Springer Berlin Heidelberg. 1986, ISBN 978-3-540-39781-6.
- ↑ Gopinath Kallianpur und Jie Xiong: Stochastic Differential Equations in Infinite Dimensional Spaces. In: Lecture Notes-Monograph Series. Band 26, 1995, S. iii–342, JSTOR:4355854.