Zufallsvariable
In der Stochastik ist eine Zufallsvariable oder Zufallsgröße (auch zufällige Größe,[1] Zufallsveränderliche, selten stochastische Variable oder stochastische Größe) eine Größe, deren Wert vom Zufall abhängig ist.[2] Formal ist eine Zufallsvariable eine Zuordnungsvorschrift, die jedem möglichen Ergebnis eines Zufallsexperiments eine Größe zuordnet.[1] Ist diese Größe eine Zahl, so spricht man von einer Zufallszahl. Beispiele für Zufallszahlen sind die Augensumme von zwei geworfenen Würfeln und die Gewinnhöhe in einem Glücksspiel. Zufallsvariablen können aber auch komplexere mathematische Objekte sein, wie Zufallsbewegungen, Zufallspermutationen oder Zufallsgraphen.
Über verschiedene Zuordnungsvorschriften können einem Zufallsexperiment auch verschiedene Zufallsvariablen zugeordnet werden.[1] Den einzelnen Wert, den eine Zufallsvariable bei der Durchführung eines Zufallsexperiments annimmt, nennt man Realisierung[3] oder im Falle eines stochastischen Prozesses einen Pfad.
Während früher der von A. N. Kolmogorow eingeführte Begriff zufällige Größe der übliche deutsche Begriff war, hat sich heute (ausgehend vom englischen random variable) der etwas irreführende Begriff Zufallsvariable durchgesetzt.[4]
Motivation des formalen Begriffs
Die Funktionswerte einer Zufallsvariablen sind abhängig von einer den Zufall repräsentierenden Größe . Zum Beispiel kann das zufällige Ergebnis eines Münzwurfs sein. Dann kann zum Beispiel eine Wette auf den Ausgang eines Münzwurfs mithilfe einer Zufallsvariablen modelliert werden. Angenommen, es wurde auf Zahl gewettet, und wenn richtig gewettet wurde, wird 1 EUR ausgezahlt, sonst nichts. Sei die Auszahlungssumme. Da der Wert von vom Zufall abhängt, ist eine Zufallsvariable, insbesondere eine reelle Zufallsvariable. Sie bildet die Menge der Wurfergebnisse auf die Menge der möglichen Auszahlungsbeträge ab:
Wettet man bei zwei Münzwürfen beide Male auf Kopf und bezeichnet die Kombination der Ausgänge der Münzwürfe mit , so lassen sich beispielsweise folgende Zufallsvariablen untersuchen:
- als Auszahlung nach der ersten Wette,
- als Auszahlung nach der zweiten Wette,
- als Summe der beiden Auszahlungen.
Zufallsvariablen selbst werden üblicherweise mit einem Großbuchstaben bezeichnet (hier ), während man für die Realisierungen die entsprechenden Kleinbuchstaben verwendet (so beispielsweise für die Realisierungen , , ).
Im Beispiel hat die Menge eine konkrete Interpretation. In der weiteren Entwicklung der Wahrscheinlichkeitstheorie ist es oft zweckmäßig, die Elemente von als abstrakte Repräsentanten des Zufalls zu betrachten, ohne ihnen eine konkrete Bedeutung zuzuweisen, und dann sämtliche zu modellierende Zufallsvorgänge als Zufallsvariable zu erfassen.
Definition
Als Zufallsvariable bezeichnet man eine messbare Funktion von einem Wahrscheinlichkeitsraum in einen Messraum.
Eine formale mathematische Definition lässt sich wie folgt geben:[5]
- Es seien ein Wahrscheinlichkeitsraum und ein Messraum. Eine -messbare Funktion heißt dann eine -Zufallsvariable auf .
Beispiel: Zweimaliger Würfelwurf
Das Experiment, mit einem fairen Würfel zweimal zu würfeln, lässt sich mit folgendem Wahrscheinlichkeitsraum modellieren:
- ist die Menge der 36 möglichen Ergebnisse
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma} ist die Potenzmenge von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega}
- Will man zwei unabhängige Würfe mit einem fairen Würfel modellieren, so setzt man alle 36 Ergebnisse gleich wahrscheinlich, wählt also das Wahrscheinlichkeitsmaß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P\left(\{(n_1,n_2)\}\right) = \tfrac {1}{36}} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1, n_2 \in \{1,2,3,4,5,6\}} .
Die Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} (gewürfelte Zahl des ersten Würfels), Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_2} (gewürfelte Zahl des zweiten Würfels) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} (Augensumme des ersten und zweiten Würfels) werden als folgende Funktionen definiert:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1\colon \Omega \to \R;\quad\left(n_1,n_2\right) \mapsto n_1,}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_2\colon \Omega \to \R;\quad\left(n_1,n_2\right) \mapsto n_2,} und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S\colon \Omega \to \R;\quad\left(n_1,n_2\right) \mapsto n_1+n_2,}
wobei für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma'} die borelsche σ-Algebra auf den reellen Zahlen gewählt wird.
Bemerkungen
In der Regel wird auf die konkrete Angabe der zugehörigen Räume verzichtet; es wird angenommen, dass aus dem Kontext klar ist, welcher Wahrscheinlichkeitsraum auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} und welcher Messraum auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega'} gemeint ist.
Bei einer endlichen Ergebnismenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma} meistens als die Potenzmenge von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} gewählt. Die Forderung, dass die verwendete Funktion messbar ist, ist dann immer erfüllt. Messbarkeit wird erst wirklich bedeutsam, wenn die Ergebnismenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} überabzählbar viele Elemente enthält.
Einige Klassen von Zufallsvariablen mit bestimmten Wahrscheinlichkeits- und Messräumen werden besonders häufig verwendet. Diese werden teilweise mit Hilfe alternativer Definitionen eingeführt, die keine Kenntnisse der Maßtheorie voraussetzen:
Reelle Zufallsvariable
Bei reellen Zufallsvariablen ist der Bildraum die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} der reellen Zahlen versehen mit der borelschen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} -Algebra. Die allgemeine Definition von Zufallsvariablen lässt sich in diesem Fall zur folgenden Definition vereinfachen:
- Eine reelle Zufallsvariable ist eine Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\colon\Omega\to\R}
, die jedem Ergebnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega}
aus einer Ergebnismenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega}
eine reelle Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X(\omega)}
zuordnet und die folgende Messbarkeitsbedingung erfüllt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall x \in \R:\ \lbrace \omega \mid X(\omega) \leq x \rbrace \in \Sigma}
Das bedeutet, dass die Menge aller Ergebnisse, deren Realisierung unterhalb eines bestimmten Wertes liegt, ein Ereignis bilden muss.
Im Beispiel des zweimaligen Würfelns sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} jeweils reelle Zufallsvariablen.
Mehrdimensionale Zufallsvariable
Eine mehrdimensionale Zufallsvariable ist eine messbare Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\colon\Omega\to\R^n} für eine Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\in\mathbb N} . Sie wird auch als Zufallsvektor bezeichnet. Damit ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X=(X_1,\dotsc,X_n)} gleichzeitig ein Vektor von einzelnen reellen Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_i\colon\Omega\to\R} , die alle auf dem gleichen Wahrscheinlichkeitsraum definiert sind. Die Verteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} wird als multivariat bezeichnet, die Verteilungen der Komponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_i} nennt man auch Randverteilungen. Die mehrdimensionalen Entsprechungen von Erwartungswert und Varianz sind der Erwartungswertvektor und die Kovarianzmatrix.
Im Beispiel des zweimaligen Würfelns ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X=(X_1,X_2)} eine zweidimensionale Zufallsvariable.
Zufallsvektoren sollten nicht mit Wahrscheinlichkeitsvektoren (auch stochastische Vektoren genannt) verwechselt werden. Diese sind Elemente des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n } , deren Komponenten positiv sind und deren Summe 1 ergibt. Sie beschreiben die Wahrscheinlichkeitsmaße auf Mengen mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n } Elementen.
Komplexe Zufallsvariable
Bei komplexen Zufallsvariablen ist der Bildraum die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb C} der komplexen Zahlen versehen mit der durch die kanonische Vektorraumisomorphie zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb C} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^2} „geerbten“ borelschen σ-Algebra. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ist genau dann eine Zufallsvariable, wenn Realteil Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Re}(X)} und Imaginärteil Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Im}(X)} jeweils reelle Zufallsvariablen sind.
Numerische oder erweiterte Zufallsvariable
Der Begriff Zufallsvariable ohne weitere Charakterisierung bedeutet meistens – und fast immer in anwendungsnahen Darstellungen – reelle Zufallsvariable. Zur Unterscheidung von einer solchen wird eine Zufallsvariable mit Werten in den erweiterten reellen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R \cup \{-\infty, \infty\}} als numerische Zufallsvariable[6] – entsprechend der Terminologie der numerischen Funktion – oder als erweiterte Zufallsvariable[6] (engl. extended random variable[7]) bezeichnet. Es gibt aber auch eine abweichende Terminologie, bei der Zufallsvariable eine numerische Zufallsvariable bezeichnet und eine reelle Zufallsvariable immer als solche bezeichnet wird.[8]
Die Verteilung von Zufallsvariablen, Existenz
Eng verknüpft mit dem eher technischen Begriff einer Zufallsvariablen ist der Begriff der auf dem Bildraum von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\;} induzierten Wahrscheinlichkeitsverteilung. Mitunter werden beide Begriffe auch synonym verwendet. Formal wird die Verteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \;P^X} einer Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\;} als das Bildmaß des Wahrscheinlichkeitsmaßes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P\;} definiert, also
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \;P^X (A) = P \left(X^{-1}(A)\right)} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \in \Sigma'} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma'} die auf dem Bildraum der Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} gegebene σ-Algebra ist.
Statt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \;P^X} werden in der Literatur für die Verteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\;} auch die Schreibweisen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_X, X(P)\;} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P \circ X^{-1}} verwendet.
Spricht man also beispielsweise von einer normalverteilten Zufallsvariablen, so ist damit eine Zufallsvariable mit Werten in den reellen Zahlen gemeint, deren Verteilung einer Normalverteilung entspricht.
Eigenschaften, welche sich allein über gemeinsame Verteilungen von Zufallsvariablen ausdrücken lassen, werden auch wahrscheinlichkeitstheoretisch genannt.[9] Für Behandlung solcher Eigenschaften ist es nicht notwendig, die konkrete Gestalt des (Hintergrund-)Wahrscheinlichkeitsraumes zu kennen, auf dem die Zufallsvariablen definiert sind.
Häufig wird deswegen von einer Zufallsvariablen lediglich die Verteilungsfunktion angegeben und der zu Grunde liegende Wahrscheinlichkeitsraum offen gelassen. Dies ist vom Standpunkt der Mathematik erlaubt, sofern es tatsächlich einen Wahrscheinlichkeitsraum gibt, der eine Zufallsvariable mit der gegebenen Verteilung erzeugen kann. Ein solcher Wahrscheinlichkeitsraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega,\Sigma,P)} lässt sich aber zu einer konkreten Verteilung leicht angeben, indem beispielsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega=\R} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma} als die Borelsche σ-Algebra auf den reellen Zahlen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} als das durch die Verteilungsfunktion induzierte Lebesgue-Stieltjes-Maß gewählt wird. Als Zufallsvariable kann dann die identische Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X \colon \R \to \R} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X(\omega) = \omega} gewählt werden.[10]
Wenn eine Familie von Zufallsvariablen betrachtet wird, reicht es aus wahrscheinlichkeitstheoretischer Perspektive genauso, die gemeinsame Verteilung der Zufallsvariablen anzugeben, die Gestalt des Wahrscheinlichkeitsraums kann wiederum offen gelassen werden.
Die Frage nach der konkreten Gestalt des Wahrscheinlichkeitsraumes tritt also in den Hintergrund, es ist jedoch von Interesse, ob zu einer Familie von Zufallsvariablen mit vorgegebenen endlichdimensionalen gemeinsamen Verteilungen ein Wahrscheinlichkeitsraum existiert, auf dem sie sich gemeinsam definieren lassen. Diese Frage wird für unabhängige Zufallsvariablen durch einen Existenzsatz von É. Borel gelöst, der besagt, dass man im Prinzip auf den von Einheitsintervall und Lebesgue-Maß gebildeten Wahrscheinlichkeitsraum zurückgreifen kann. Ein möglicher Beweis nutzt, dass sich die binären Nachkommastellen der reellen Zahlen in [0,1] als ineinander verschachtelte Bernoulli-Folgen betrachten lassen (ähnlich Hilberts Hotel).[11]
Mathematische Attribute für Zufallsvariablen
Verschiedene mathematische Attribute, die in der Regel denen für allgemeine Funktionen entlehnt sind, finden bei Zufallsvariablen Anwendung. Die häufigsten werden in der folgenden Zusammenstellung kurz erklärt:
Diskret
Eine Zufallsvariable wird als diskret bezeichnet, wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt oder etwas allgemeiner, wenn ihre Verteilung eine diskrete Wahrscheinlichkeitsverteilung ist.[12] Im obigen Beispiel des zweimaligen Würfelns sind alle drei Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} diskret. Ein weiteres Beispiel für diskrete Zufallsvariablen sind zufällige Permutationen.
Konstant
Eine Zufallsvariable wird als konstant bezeichnet, wenn sie nur einen Wert annimmt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X(\omega)=c} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega} . Sie ist ein Spezialfall einer diskreten Zufallsvariable.
Unabhängig
Zwei reelle Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X,Y} heißen unabhängig, wenn für je zwei Intervalle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a_1,b_1]} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a_2,b_2]} die Ereignisse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_X := \{ \omega | X(\omega) \in [a_1,b_1] \}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_Y := \{ \omega | Y(\omega) \in [a_2,b_2] \}} stochastisch unabhängig sind. Das sind sie, wenn gilt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(E_X \cap E_Y ) = P(E_X) P(E_Y)} .
In obigem Beispiel sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_2} unabhängig voneinander; die Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} hingegen nicht.
Unabhängigkeit mehrerer Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1, X_2, \dotsc, X_n} bedeutet, dass das Wahrscheinlichkeitsmaß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_X} des Zufallsvektors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X=\left(X_1, X_2, \dotsc, X_n\right)} dem Produktmaß der Wahrscheinlichkeitsmaße der Komponenten, also dem Produktmaß von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_{X_1}, P_{X_2}, \dotsc, P_{X_n}} entspricht.[13] So lässt sich beispielsweise dreimaliges unabhängiges Würfeln durch den Wahrscheinlichkeitsraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega,\Sigma,P)} mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega=\{1,2,3,4,5,6\}^3} ,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma} der Potenzmenge von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P\left(\left(n_1, n_2, n_3\right)\right)=\frac{1}{6^3}=\frac{1}{216}}
modellieren; die Zufallsvariable "Ergebnis des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -ten Wurfes" ist dann
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_k\left(n_1, n_2, n_3\right)=n_k} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k\in\{1,2,3\}} .
Die Konstruktion eines entsprechenden Wahrscheinlichkeitsraums für eine beliebige Familie unabhängiger Zufallsvariable mit gegebenen Verteilungen ist ebenfalls möglich.[14]
Identisch verteilt
Zwei oder mehr Zufallsvariablen heißen identisch verteilt (bzw. i.d. für identically distributed), wenn ihre induzierten Wahrscheinlichkeitsverteilungen gleich sind. In Beispiel des zweimaligen Würfelns sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_2} identisch verteilt; die Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} hingegen nicht.
Unabhängig und identisch verteilt
Häufig werden Folgen von Zufallsvariablen untersucht, die sowohl unabhängig als auch identisch verteilt sind; demnach spricht man von unabhängig identisch verteilten Zufallsvariablen, üblicherweise mit u.i.v. bzw. i.i.d. (für independent and identically distributed) abgekürzt.
In obigem Beispiel des dreimaligen Würfelns sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_3} i.i.d. Die Summe der ersten beiden Würfe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_{1,2}=X_1+X_2} und die Summe des zweiten und dritten Wurfs Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_{2,3}=X_2+X_3} sind zwar identisch verteilt, aber nicht unabhängig. Dagegen sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_{1,2}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_3} unabhängig, aber nicht identisch verteilt.
Austauschbar
Austauschbare Familien von Zufallsvariablen sind Familien, deren Verteilung sich nicht ändert, wenn man endlich viele Zufallsvariablen in der Familie vertauscht. Austauschbare Familien sind stets identisch verteilt, aber nicht notwendigerweise unabhängig.
Mathematische Attribute für reelle Zufallsvariablen
Kenngrößen
Zur Charakterisierung von Zufallsvariablen dienen einige wenige Funktionen, die wesentliche mathematische Eigenschaften der jeweiligen Zufallsvariable beschreiben. Die wichtigste dieser Funktionen ist die Verteilungsfunktion, die Auskunft darüber gibt, mit welcher Wahrscheinlichkeit die Zufallsvariable einen Wert bis zu einer vorgegebenen Schranke annimmt, beispielsweise die Wahrscheinlichkeit, höchstens eine Vier zu würfeln. Bei stetigen Zufallsvariablen wird diese durch die Wahrscheinlichkeitsdichte ergänzt, mit der die Wahrscheinlichkeit berechnet werden kann, dass die Werte einer Zufallsvariablen innerhalb eines bestimmten Intervalls liegen. Des Weiteren sind Kennzahlen wie der Erwartungswert, die Varianz oder höhere mathematische Momente von Interesse.
Stetig oder kontinuierlich
Das Attribut stetig wird für unterschiedliche Eigenschaften verwendet.
- Eine reelle Zufallsvariable wird als stetig (oder auch absolut stetig) bezeichnet, wenn sie eine Dichte besitzt (ihre Verteilung absolutstetig bezüglich des Lebesgue-Maßes ist).[15]
- Eine reelle Zufallsvariable wird als stetig bezeichnet, wenn sie eine stetige Verteilungsfunktion besitzt.[16] Insbesondere bedeutet das, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(\{X=x\})=0} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in\R} gilt.
Messbarkeit, Verteilungsfunktion und Erwartungswert
Wenn eine reelle Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} auf dem Ergebnisraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} und eine messbare Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g\colon \R \to \R} gegeben ist, dann ist auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y = g(X)} eine Zufallsvariable auf demselben Ergebnisraum, da die Verknüpfung messbarer Funktionen wieder messbar ist. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g(X)} wird auch als Transformation der Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} unter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} bezeichnet. Die gleiche Methode, mit der man von einem Wahrscheinlichkeitsraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega, \Sigma, P)} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\R, \mathcal{B}(\R),P^X)} gelangt, kann benutzt werden, um die Verteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} zu erhalten.
Die Verteilungsfunktion von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} lautet
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_Y(y) = \operatorname{P}(g(X) \leq y)} .
Der Erwartungswert einer quasi-integrierbaren Zufallsgröße Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega, \Sigma, P)} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\bar{\R}, \mathcal{B}(\bar{\R}))} berechnet sich folgend:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(X) = \int_\Omega X(\omega)\mathrm{d}P(\omega)\,} .
Integrierbar und quasi-integrierbar
Eine Zufallsvariable heißt integrierbar, wenn der Erwartungswert der Zufallsvariable existiert und endlich ist. Die Zufallsvariable heißt quasi-integrierbar, wenn der Erwartungswert existiert, möglicherweise aber unendlich ist. Jede integrierbare Zufallsvariable ist folglich auch quasi-integrierbar.
Beispiel
Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} eine reelle stetig verteilte Zufallsvariable und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y = X^2} .
Dann ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_Y(y) = \operatorname{P}(X^2 \leq y).}
Fallunterscheidung nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} :
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y<0:}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{alignat}{2} & & \operatorname P(X^2 \leq y) &= 0\\ &\Rightarrow & F_Y(y) &= 0 \end{alignat} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y\geq 0:}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{alignat}{2} & & \operatorname P\left(X^2\leq y\right) &=\operatorname P\left(|X|\leq\sqrt y\right)\\ & & &= \operatorname P\left(-\sqrt y\leq X\leq\sqrt y\right)\\ &\Rightarrow & F_Y\left(y\right) &= F_X\left(\sqrt y\right) - F_X\left(-\sqrt y\right) \end{alignat} }
Standardisierung
Eine Zufallsvariable nennt man standardisiert, wenn ihr Erwartungswert 0 und ihre Varianz 1 ist. Die Transformation einer Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} in eine standardisierte Zufallsvariable
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z=\frac{Y-\operatorname{E}(Y)}{\sqrt{\operatorname{Var}(Y)}}}
bezeichnet man als Standardisierung der Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} .
Sonstiges
- Zeitlich zusammenhängende Zufallsvariablen können auch als stochastischer Prozess aufgefasst werden
- Eine Folge von Realisierungen einer Zufallsvariable nennt man auch Zufallssequenz
- Eine Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\colon \Omega \to \R^n} erzeugt eine σ-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{F}_X(\mathcal{B}):=\{X^{-1}(B)|B\in\mathcal{B}(\R^n)\}} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{B}(\R^n)} die Borelsche σ-Algebra des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n} ist.
Literatur
- Karl Hinderer: Grundbegriffe der Wahrscheinlichkeitstheorie. Springer, Berlin/ Heidelberg/ New York 1980, ISBN 3-540-07309-4.
- Erich Härtter: Wahrscheinlichkeitsrechnung für Wirtschafts- und Naturwissenschaftler. Vandenhoeck & Ruprecht, Göttingen 1974, ISBN 3-525-03114-9.
- Michel Loève: Probability Theory I. 4. Auflage. Springer, 1977, ISBN 0-387-90210-4.
Weblinks
Einzelnachweise
- ↑ a b c
- ↑ Norbert Henze: Stochastik für Einsteiger: Eine Einführung in die faszinierende Welt des Zufalls. Vieweg+Teubner Verlag, 2010, ISBN 978-3-8348-0815-8, doi:10.1007/978-3-8348-9351-2, S. 12.
- ↑
- ↑ Jeff Miller: Earliest Known Uses of Some of the Words of Mathematics. Abschnitt R.
- ↑ Karl Hinderer: Grundbegriffe der Wahrscheinlichkeitstheorie. Springer, Berlin 1980, ISBN 3-540-07309-4 (nicht überprüft)
- ↑ a b
- ↑
- ↑
- ↑ Loève: Probability Theory. 4. Auflage. Band 1, Springer 1977, ISBN 0-387-90210-4, S. 172f.
- ↑ Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972, ISBN 0-12-065201-3, Definition 5.6.2.
- ↑ Olav Kallenberg: Foundations of Modern Probability. 2. Ausgabe. Springer, New York 2002, ISBN 0-387-95313-2, S. 55.
- ↑
- ↑ Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972, ISBN 0-12-065201-3 (Definition 5.8.1)
- ↑ Klaus D. Schmidt: Maß und Wahrscheinlichkeit. Springer-Verlag, Berlin/ Heidelberg 2009, ISBN 978-3-540-89729-3, Kapitel 11.4.
- ↑ Marek Fisz: Wahrscheinlichkeitsrechnung und mathematische Statistik. 11. Auflage. VEB Deutscher Verlag der Wissenschaften, Berlin 1989, Definition 2.3.3.
- ↑ Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972, ISBN 0-12-065201-3, S. 210.