Benutzer:Digamma/Skalarprodukt

aus Wikipedia, der freien Enzyklopädie

Das Skalarprodukt (auch inneres Produkt oder Punktprodukt) ist eine mathematische Verknüpfung zwischen Vektoren. Historisch wurde es zuerst im euklidischen Raum eingeführt. Geometrisch berechnet man das Skalarprodukt zweier Vektoren und im dreidimensionalen Anschauungsraum nach der Formel

.

Dabei bezeichnen und jeweils die Längen der Vektoren. Mit wird der Kosinus des von den beiden Vektoren eingeschlossenen Winkels bezeichnet.

In einem kartesischen Koordinatensystem gilt

Kennt man die kartesischen Koordinaten der Vektoren, so kann man mit dieser Formel das Skalarprodukt ausrechnen und mit der obigen Formel dann den Winkel zwischen den beiden Vektoren.

Wie bei der normalen Multiplikation kann das Multiplikationszeichen auch weggelassen werden: = , wenn klar ist, was gemeint ist.

In der Linearen Algebra wird dieses Konzept verallgemeinert. Ein Skalarprodukt ist dort eine Funktion, die zwei Elementen eines Vektorraums ein Element des dem Vektorraum zugrunde liegenden Skalarkörpers zuordnet. Als Notation verwendet man statt des Malpunkts meist spitze Klammern und schreibt also für das Skalarprodukt zweier Vektoren und . Ist die Bedeutung von und klar, lässt man die spitzen Klammern auch weg und schreibt . Auch die Notation ist gebräuchlich, zeigt sie doch die enge Verwandtschaft zur Matrizenmultiplikation auf.

Im Allgemeinen ist in einem reellen oder komplexen Vektorraum von vornherein kein Skalarprodukt festgelegt. Ein Raum zusammen mit einem Skalarprodukt wird als Innenproduktraum oder Prähilbertraum bezeichnet. Diese verallgemeinern den euklidischen Raum und ermöglichen damit die Anwendung geometrischer Methoden auf abstrakte Strukturen.

Im euklidischen Raum

Geometrische Definition und Notation

Vektoren im dreidimensionalen euklidischen Raum oder in der zweidimensionalen euklidischen Ebene kann man als Pfeile darstellen. Dabei stellen Pfeile, die parallel, gleichlang und gleichorientiert sind, denselben Vektor dar. Das Skalarprodukt zweier Vektoren und ist ein Skalar, das heißt eine reelle Zahl. Geometrisch lässt es sich wie folgt definieren:

Bezeichnen und die Längen der Vektoren und und bezeichnet den von und eingeschlossenen Winkel, so ist

.

Wie bei der normalen Multiplikation, aber seltener als dort, wird das Multiplikationszeichen manchmal auch weggelassen, wenn klar ist, was gemeint ist:

Statt schreibt man in diesem Fall gelegentlich auch .

Eine andere übliche Notation ist .

Veranschaulichung

Um sich die Definition zu veranschaulichen, betrachtet man die orthogonale Projektion des Vektors auf die durch bestimmte Richtung und setzt

Es gilt dann und für das Skalarprodukt von und gilt

In kartesischen Koordinaten

Führt man in der euklidischen Ebene bzw. im euklidischen Raum kartesische Koordinaten ein, so besitzt jeder Vektor eine Koordinatendarstellung als 2- bzw. 3-Tupel, die meist als Spalten geschrieben werden. Für das Skalarprodukt der Vektoren

   und  

in der euklidischen Ebene gilt dann:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a \cdot \vec b = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = a_1 b_1 + a_2 b_2. }

Im dreidimensionalen euklidischen Raum gilt für die Vektoren

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a = \begin{pmatrix} a_1 \\ a_2 \\a_3 \end{pmatrix}}   und   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b = \begin{pmatrix} b_1 \\ b_2 \\b_3 \end{pmatrix}}

entsprechend

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a \cdot \vec b = \begin{pmatrix} a_1 \\ a_2\\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3. }

Zum Beispiel berechnet sich das Skalarprodukt der beiden Vektoren

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a = \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix}}    und   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b = \begin{pmatrix}-7 \\ 8 \\ 9 \end{pmatrix}}

wie folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a \cdot \vec b = 1 \cdot (-7) + 2 \cdot 8 + 3 \cdot 9 = 36 }

Eigenschaften

Aus der geometrischen Definition ergibt sich direkt:

  • Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b} parallel und gleichorientiert (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi = 0^\circ} ), so gilt
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a \cdot \vec b = a b} .
  • Insbesondere ergibt das Skalarprodukt eines Vektors mit sich selbst das Quadrat seiner Länge:
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a \cdot \vec a = a^2} .
  • Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b} parallel und entgegengesetzt orientiert (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi = 180^\circ} ), so gilt
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a \cdot \vec b = - a b} .
  • Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b} orthogonal (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi = 90^\circ} ) , so gilt
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a \cdot \vec b = 0} .

Das Skalarprodukt hat die folgenden Eigenschaften, die man von einer Multiplikation erwartet:

  1. Das Skalarprodukt ist kommutativ (symmetrisch):
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a \cdot \vec b = \vec b \cdot \vec a} für alle Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b}
  2. Es gilt das Assoziativgesetz für die Multiplikation mit Skalaren (das Skalarprodukt ist homogen in jedem Argument):
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (r \vec a) \cdot \vec b = r\, (\vec a \cdot \vec b) = \vec a \cdot r \vec b} für alle Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b} und alle Skalare Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r \in \R}
  3. Es gilt das Distributivgesetz (das Skalarprodukt ist additiv in jedem Argument):
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a \cdot (\vec b + \vec c) = \vec a \cdot \vec b + \vec a \cdot \vec c} und
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\vec a + \vec b) \cdot \vec c = \vec a \cdot \vec c + \vec b \cdot \vec c} für alle Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec c} .

Die Eigenschaften 2 und 3 fasst man auch zusammen als: Das Skalarprodukt ist bilinear.

Weder die geometrische Definition noch die Definition in kartesischen Koordinaten ist willkürlich. Beide folgen aus den natürlichen Forderungen, dass das Skalarprodukt eine Vektors mit sich selbst das Quadrat seiner Länge ist, und dass das Skalarprodukt die obigen Eigenschaften 1–3 erfüllt.

Betrag von Vektoren

Mit Hilfe des Skalarproduktes ist es möglich, aus der Koordinatendarstellung die Länge (den Betrag) eines Vektors zu berechnen:

Für Vektoren des zweidimensionalen Raumes gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | \vec a | = \sqrt{\vec a\cdot \vec a} = \sqrt{{a_1}^2+{a_2}^2}.}

Man erkennt hier den Satz des Pythagoras wieder. Im dreidimensionalen Raum gilt entsprechend

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | \vec a | = \sqrt{\vec a\cdot \vec a} = \sqrt{{a_1}^2+{a_2}^2+{a_3}^2}.}

Die Längen der beiden Vektoren im obenstehenden Beispiel betragen also

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\vec a| = \sqrt{1^2+2^2+3^2} = \sqrt{14} \approx 3{,}74,}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\vec b| = \sqrt{(-7)^2+8^2+9^2} = \sqrt{194} \approx 13{,}93.}

Winkelberechnung

Indem man die geometrische Definition mit der Koordinatendarstellung kombiniert, kann man aus den Koordinaten zweier Vektoren den von ihnen eingeschlossenen Winkel berechnen. Aus

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a \cdot \vec b = |\vec a| \, |\vec b| \, \cos \sphericalangle (\vec a, \vec b)}

folgt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos \sphericalangle(\vec a,\vec b) = \frac{\vec a\cdot\vec b}{\left|\vec a\right|\,|\vec b|}}

bzw.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sphericalangle(\vec a,\vec b) = \arccos\frac{\vec a\cdot\vec b}{\left|\vec a\right|\,|\vec b|}}

Damit lässt sich der Winkel zwischen den Vektoren im obenstehenden Beispiel berechnen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sphericalangle(\vec a,\vec b)=\arccos\frac{36}{3{,}74\cdot 13{,}93} \approx 46{,}3^\circ.}

Orthogonalität und orthogonale Projektion

Zwei Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b} sind genau dann orthogonal, wenn ihr Skalarprodukt null ist, also

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a \perp \vec b \iff \vec a \cdot \vec b = 0 }

Die orthogonale Projektion von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b} auf die durch den Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} gegebene Richtung ist der Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b_{\vec a} = k \cdot \vec a} mit Komponente

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k = \frac{\vec b \cdot \vec a}{\vec a \cdot \vec a}= \frac{\vec b \cdot \vec a}{|\vec a|^2}.}

Die Projektion ist der Vektor, dessen Endpunkt der Lotfußpunkt vom Endpunkt von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b} auf die durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} bestimmte Gerade durch den Nullpunkt ist. Der Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b - \vec b_{\vec a}} steht senkrecht auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} .





Das Standardskalarprodukt

Im reellen n-dimensionalen Koordinatenraum Rn

Ausgehend von der Darstellung des euklidischen Skalarprodukts in kartesischen Koordinaten definiert man in der linearen Algebra das Standardskalarprodukt im Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -dimensionalen Koordinatenraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n} wie folgt:

Sind

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x=\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}}    und   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{y}=\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}

zwei Vektoren aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n} , so ist ihr Skalarprodukt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x\cdot \vec y := \sum_{i=1}^n x_iy_i = {x_1}{y_1}+{x_2}{y_2}+\dotsb + {x_n}{y_n}.}

Häufig wird das Skalarprodukt statt mit einem Malpunkt durch spitze Klammern bezeichnet und man schreibt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle \vec x, \vec y\rangle} statt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x \cdot \vec y} .

Länge von Vektoren, Winkel und Orthogonalität

Man definiert dann die Länge eines Vektors, indem man die Formel aus dem euklidischen Raum überträgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | \vec x | = \sqrt{\vec x\cdot \vec x} = \sqrt{{x_1}^2+{x_2}^2+\dots +{x_n}^2}}

Entsprechend definiert man den Winkel zwischen zwei Vektoren durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos \sphericalangle\left(\vec x,\vec y\right)=\frac{\vec x\cdot\vec y}{\left|\vec x\right|\,\left|\vec y\right|}}

bzw.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sphericalangle\left(\vec x,\vec y\right)=\arccos\frac{\vec x\cdot\vec y}{\left|\vec x\right|\,\left|\vec y\right|}}

Man nennt zwei Vektoren \vec x und \vec y zueinander orthogonal, wenn ihr Skalarprodukt null ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x \perp \vec y \iff \vec x \cdot \vec y = 0 }

Winkelberechnung

Im euklidischen Raum gilt die Formel aus der Einleitung (eine Begründung für diese Formel findet sich weiter unten)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x\cdot \vec y = |\vec x| |\vec y| \cos \sphericalangle \left(\vec x,\vec y\right).}

Damit lässt sich der Winkel zwischen den Vektoren im obenstehenden Beispiel berechnen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sphericalangle\left(\vec x,\vec y\right)=\arccos\frac{\vec x\cdot\vec y}{\left|\vec x\right|\,\left|\vec y\right|}=\arccos\frac{36}{3{,}74\cdot 13{,}93} \approx 46{,}3^\circ.}

Grundlegende Eigenschaften

Es gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x\cdot \vec x \geq 0.}

Deswegen ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\vec x| = \sqrt{\vec x\cdot \vec x}.}

immer reell.

Sind zwei Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec y} parallel, so gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x\cdot \vec y = |\vec x| \cdot |\vec y|.}

Stehen zwei Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{x}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{y}} aufeinander senkrecht (orthogonal), so gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{x}\cdot \vec{y} = 0 } .

Damit lässt sich auf einfache Weise überprüfen, ob zwei Vektoren zueinander orthogonal sind.

Ist einer der beiden Vektoren ein Einheitsvektor, so ergibt das Skalarprodukt die Länge der Projektion des anderen Vektors auf die vom Einheitsvektor definierte Gerade.

Definition des Standardskalarproduktes im komplexen Vektorraum

Man definiert im Fall des komplexen Vektorraums Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb C^n} über dem Körper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb C} das Standardskalarprodukt für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x,\vec y\in \mathbb C^n} folgendermaßen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x\cdot \vec y := \sum_{i=1}^n x_i\overline{y_i} = {x_1}\overline{y_1}+{x_2}\overline{y_2}+\dotsb + {x_n}\overline{y_n},}

wobei der Überstrich die komplexe Konjugation bedeutet. Alternativ könnte man auch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x\cdot \vec y := \sum_{i=1}^n \overline{x_i}y_i = \overline{x_1}{y_1}+\overline{x_2}{y_2}+\dotsb + \overline{x_n}{y_n}}

definieren. Beide Definitionen sind gleichwertig, denn das eine Skalarprodukt ist die komplexe Konjugation des anderen. In der Praxis ist es aber zweckmäßig, sich auf eine einzige Definition zu einigen, wobei in der Mathematik die Version Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum_{i=1}^n x_i\overline{y_i}} bevorzugt wird, in der Physik hingegen die Version Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum_{i=1}^n \overline{x_i} y_i } . Für beide Definitionen gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x\cdot \vec y \in \mathbb C} und wie im Reellen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x\cdot \vec x \geq 0} , da aufgrund der Definition Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x\cdot \vec x \in \R} ist und im Gegensatz zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb C} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} die Ordnungsrelation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \geq} definiert ist.

Eigenschaften

  • Während das Skalarprodukt im reellen Fall symmetrisch ist, d.h. es gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x \cdot \vec y = \vec y\cdot \vec x} , ist es im komplexen Fall hermitesch, was Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x \cdot \vec y=\overline{\vec y \cdot \vec x }} bedeutet.
  • Das Skalarprodukt ist nicht assoziativ (und kann es im eigentlichen Sinne auch gar nicht sein, weil sein Wert ein Skalar und nicht wieder ein Vektor ist).
  • Das Skalarprodukt ist distributiv bezüglich der Addition und Subtraktion.
  • Es gilt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle A \cdot x,y \rangle =\langle x,A^* \cdot y\rangle } , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A^*} die zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A } adjungierte Matrix ist.



Allgemeine Definition

In der allgemeinen Theorie werden die Variablen für Vektoren, also Elemente eines beliebigen Vektorraums, im Allgemeinen nicht durch Pfeile gekennzeichnet. Das Skalarprodukt wird meist nicht durch einen Malpunkt, sondern durch ein Paar von spitzen Klammern bezeichnet.

  • Ein Skalarprodukt oder inneres Produkt auf einem reellen Vektorraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} ist eine symmetrische positiv definite Bilinearform Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle{\cdot},{\cdot}\rangle\colon V\times V\to\R} , das heißt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x,y,z\in V} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda\in\R} gelten die folgenden Bedingungen:
    1. bilinear:
      • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle}
      • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x,y+z\rangle=\langle x,y\rangle+\langle x,z\rangle}
      • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x,\lambda y\rangle=\lambda\langle x,y\rangle=\langle\lambda x,y\rangle}
    2. symmetrisch: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x,y\rangle=\langle y,x\rangle}
    3. positiv definit: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x,x\rangle\geq0,} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x,x\rangle=0} genau dann, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=0}
  • Ein Skalarprodukt oder inneres Produkt auf einem komplexen Vektorraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} ist eine hermitesche positiv definite Sesquilinearform Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle{\cdot},{\cdot}\rangle\colon V\times V\to\mathbb C} , das heißt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x,y,z\in V} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda\in\mathbb C} gelten die folgenden Bedingungen:
    1. sesquilinear:
      • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x,y+z\rangle=\langle x,y\rangle+\langle x,z\rangle}
      • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle \lambda x, y\rangle= \bar \lambda\langle x,y\rangle} (semilinear im ersten Argument)
      • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle}
      • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x, \lambda y\rangle=\lambda\langle x,y\rangle} (linear im zweiten Argument)
    2. hermitesch: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x,y\rangle=\overline{\langle y,x\rangle}}
    3. positiv definit: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x,x\rangle\geq0} , und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x,x\rangle=0} genau dann, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=0} . (Dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x,x\rangle} reell ist, folgt aus Bedingung 2.)

Ein reeller oder komplexer Vektorraum, in dem ein inneres Produkt definiert ist, heißt Innenproduktraum oder Prähilbertraum; ist er darüber hinaus auch noch vollständig bezüglich der durch das innere Produkt induzierten Norm, wird er als Hilbertraum bezeichnet.

Abweichende Definitionen:

  • Oft wird jede symmetrische Bilinearform bzw. jede hermitesche Sesquilinearform als Skalarprodukt bezeichnet; mit diesem Sprachgebrauch beschreiben die obigen Definitionen positiv definite Skalarprodukte.
  • Im komplexen Fall ließe sich das Skalarprodukt alternativ als semilinear im zweiten und linear im ersten Argument definieren. In der Physik wird jedoch die obige Variante durchgängig benutzt (siehe Bra- und Ket-Vektoren). Siehe hierzu auch den Abschnitt „Skalarprodukt als Matrizenprodukt“ weiter unten.

Skalarprodukt als Matrizenprodukt

Das Standardskalarprodukt lässt sich auch als Matrizenprodukt schreiben, indem man den Vektor als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \times 1} -Matrix (Spaltenvektor) interpretiert: Im reellen Fall gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x, y\rangle = x^Ty = y^Tx,}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {}^T} für die transponierte Matrix steht.

Im komplexen Fall gilt (für den links semilinearen, rechts linearen Fall)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x, y\rangle = x^{H}y,}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {}^H} für die hermitesch adjungierte Matrix steht.

Allgemeiner definiert im reellen Fall jede symmetrische und positiv definite Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} über

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x, y\rangle_A = x^T A y }

ein Skalarprodukt; ebenso wird im komplexen Fall für jede hermitesch und positiv definite Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} über

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x, y\rangle_A = x^H A y }

ein Skalarprodukt definiert.

Skalarprodukt und Winkel

Winkelberechnung im euklidischen Raum

Das Skalarprodukt ist ursprünglich im Rahmen der analytischen Geometrie im euklidischen Raum eingeführt worden. So ist es mit Hilfe des Skalarproduktes beispielsweise möglich, den Winkel zwischen zwei Vektoren zu berechnen: Das Skalarprodukt ergibt sich nämlich auch aus den Beträgen der beiden Vektoren und dem Kosinus des von diesen eingeschlossenen Winkels gemäß der Formel

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x\cdot \vec y = |\vec x| \cdot |\vec y| \cdot \cos \sphericalangle \left(\vec x,\vec y\right).}

Um dies zu zeigen, mögen drei Vektoren, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a,\vec b,\vec c } des euklidischen Raumes betrachtet werden.

Datei:SkalarproduktSkizze.svg

Wegen des Kosinussatzes ist die Länge des dem Winkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma} gegenüberliegenden Vektors

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\vec c|^2=|\vec a|^2+|\vec b|^2-2|\vec a||\vec b| \cdot \cos(\gamma).}

Da sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec c} als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b-\vec a} ergibt, erhält man

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\vec b-\vec a|^2 = |\vec a|^2 + |\vec b|^2 - 2|\vec a| |\vec b| \cdot \cos(\gamma).}

Berechnet man nun die Länge über das Skalarprodukt, so erhält man

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\vec b-\vec a\right)\cdot\left(\vec b-\vec a\right) = \vec a\cdot\vec a + \vec b\cdot\vec b-2|\vec a||\vec b| \cdot \cos(\gamma).}

Aus den Rechenregeln für das Skalarprodukt ergibt sich dann

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b\cdot\vec b -2 \vec a\cdot\vec b+ \vec a\cdot\vec a = \vec a\cdot\vec a + \vec b\cdot\vec b-2|\vec a||\vec b| \cdot \cos(\gamma)}

und daraus die gewünschte Beziehung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a\cdot\vec b = |\vec a||\vec b| \cdot \cos(\gamma).}

Skalarprodukt und Orthogonalität

Aus der Winkeldarstellung des Skalarprodukts folgt, dass das Skalarprodukt zweier von Null verschiedener Vektoren genau dann Null ist, wenn der Kosinus des von ihnen eingeschlossenen Winkels Null ist, wenn also die beiden Vektoren zueinander orthogonal sind.

Die senkrechte Projektion von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b} entlang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} ist der Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b_{\vec a} = k \cdot \vec a} mit Komponente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k = \frac{\vec b \cdot \vec a}{\vec a \cdot \vec a}= \frac{\vec b \cdot \vec a}{|\vec a|^2}} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b} in Richtung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a } . Die Projektion ist der Vektor, dessen Endpunkt der Lotfußpunkt vom Endpunkt von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b} auf die durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} bestimmte Gerade durch den Nullpunkt ist. Der Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec b - \vec b_{\vec a}} steht senkrecht auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec a} .

Winkeldefinition im abstrakten Fall

Die Cauchy-Schwarzsche Ungleichung besagt, dass für das abstrakte Skalarprodukt die Beziehung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left|\langle x,y \rangle\right|^2 \leq \langle x, x\rangle \cdot \langle y,y\rangle}

gilt, die im Falle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x,y\neq 0} zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left|\frac{\langle x,y \rangle}{\sqrt{\langle x, x\rangle} \cdot \sqrt{\langle y,y\rangle}}\right|\leq 1}

umgeformt werden kann. Daher lässt sich auch im abstrakten Fall mittels

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos\varphi=\frac{\langle x,y \rangle}{\sqrt{\langle x, x\rangle} \cdot \sqrt{\langle y,y\rangle}}}

der Winkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} zweier Vektoren definieren.

Berechnung des Skalarprodukts mit Hilfe seiner Komponenten

In einem endlichdimensionalen Vektorraum ist das in der Einleitung definierte Skalarprodukt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x, y\rangle := \sum_{i=1}^n \overline{x_i}y_i = \overline{x_1}y_1+\overline{x_2}y_2+\dots + \overline{x_n}y_n }

nicht die einzige Funktion, die der abstrakten Definition des inneren Produkts entspricht. So genügt beispielsweise auch die Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x, y\rangle := x^{\,H}Ay}

für jede positiv definite, hermitesche Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} der abstrakten Definition eines inneren Produkts. Umgekehrt, jedes gegebene innere Produkt lässt sich mit Hilfe solch einer Matrix darstellen, dies ist also die allgemeine Form eines inneren Produkts auf dem komplexen Vektorraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb C^n} . Lässt sich nun aber zu einem gegebenen inneren Produkt eine Orthonormalbasis finden, also eine Menge von Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e_1,e_2,\dots,e_n} mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle e_i,e_j\rangle=\delta_{ij},}

wobei

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_{ij}=\begin{cases} 1, & \text{falls }i=j\\ 0, & \text{sonst} \end{cases}}

das Kronecker-Delta darstellt, und kann man

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=\sum_i x_i e_i\quad \text{ sowie }\quad y=\sum_j y_j e_j\,}

in dieser Basis darstellen, so erhält man aus den Rechenregeln des inneren Produktes

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x,y\rangle = \left\langle\sum_i x_ie_i,\sum_j y_je_j\right\rangle = \sum_i \overline{x_i} \sum_j y_j \langle e_i, e_j\rangle = \sum_i \overline{x_i} y_i, }

also genau die in der Einleitung definierte Berechnung des Skalarprodukts mit Hilfe der Komponenten der beiden Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} . Im endlichdimensionalen Fall lässt sich zeigen, dass es stets möglich ist, eine solche Orthonormalbasis zu finden, beispielsweise über die Gram-Schmidt-Orthogonalisierung.

Der Begriff der Orthonormalbasis und die Berechnung des inneren Produkts mit Hilfe der Komponenten der beiden Argumente lassen sich auf unendlichdimensionale Räume verallgemeinern, wobei die Vektoren üblicherweise nur als eine unendliche Summe von Vektoren aus der Orthonormalbasis dargestellt werden können und das innere Produkt daher ebenfalls eine unendliche Summe wird. Die Orthonormalbasis ist also keine Basis im Sinne der linearen Algebra, die eine Darstellung jedes Vektors als endliche Summe von Basisvektoren ermöglicht. Zur besseren Unterscheidung wird daher im unendlichdimensionalen Fall die Basis im Sinne der linearen Algebra als Hamelbasis bezeichnet.

Skalarprodukt und unitäre Transformationen

Aus der Darstellung des Skalarprodukts mittels Winkel

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x, y\rangle = |x||y| \cdot \cos\measuredangle (x,y)}

folgt geometrisch, dass das Skalarprodukt invariant gegenüber längen- und winkeltreuen Abbildungen sein muss. Dies lässt sich auch analytisch nachrechnen. Längen- und winkeltreue Abbildungen werden durch unitäre Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} dargestellt, das sind Matrizen mit der Eigenschaft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle UU^H=I} oder

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_k u_{ik}\overline{u_{jk}}=\delta_{ij},}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_{ij}} das Kronecker-Delta darstellt. Für die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -te Komponente von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Ux} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Uy} gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\left(Ux\right)}_i=\sum_j u_{ij}x_j}

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\left(Uy\right)}_i=\sum_k u_{ik}y_k.}

Somit berechnet sich das Skalarprodukt als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \langle Ux,Uy\rangle &= \sum_i \sum_j \overline{u_{ij}x_j} \sum_k u_{ik}y_k\\ &= \sum_j \overline{x_j} \sum_k y_k \sum_i \overline{u_{ij}}u_{ik}\\ &= \sum_j \overline{x_j} \sum_k y_k \delta_{jk}\\ &= \sum_j \overline{x_j} y_j\\ &= \langle x,y\rangle, \end{align}}

das Skalarprodukt bleibt also tatsächlich unverändert.

Anwendung

In der Physik sind viele Größen, wie zum Beispiel die Arbeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} , durch Skalarprodukte definiert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W=\vec F \cdot \vec s = |\vec F| \cdot |\vec s| \cdot \cos \alpha}

mit den vektoriellen Größen Kraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} und Weg Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} .

Literatur

  • Gerd Fischer: Lineare Algebra. 15. Auflage. Vieweg Verlag, ISBN 3528032170.

Siehe auch

Weblinks