Maclaurinsche Reihe

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von MacLaurinsche Formel)

Die maclaurinsche Reihe (nach Colin Maclaurin) ist in der Analysis eine Bezeichnung für den Spezialfall einer Taylor-Reihe mit Entwicklungsstelle :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!}x^j = f(0) + f'(0) \cdot x + \frac{1}{2!} f''(0) \cdot x^2 + \dots }

Das Betrachten nur endlich vieler Glieder der obigen Reihe liefert die maclaurinsche Formel als Spezialfall der Taylor-Formel:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f (x) = f(0) + f'(0) \cdot x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + R_n}

mit dem Restglied

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_n = \frac{x^{n+1}}{(n+1)!}f^{(n+1)}(\theta x) \qquad 0 < \theta < 1 }

oder alternativ

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_n = \frac{1}{n!} \int \limits_{0}^x (x-t)^n f^{(n+1)}(t) \mathrm{d}t. }

Die Konvergenz der Maclaurinschen Reihe kann durch Untersuchung des Restgliedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_n } oder durch Bestimmung des Konvergenzradius nachgewiesen werden. Im letzteren Falle kann es jedoch vorkommen, dass die Reihe zwar konvergiert, ihre Summe aber ungleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) } ist. Ein Beispiel für solch einen Fall ist die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) = \exp(-1/x^2) } mit der Bedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(0) = 0 } : die Glieder ihrer Maclaurinschen Reihe sind alle 0, allerdings ist für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \not=0. } [1]

Für Funktionen, die bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=0} nicht definiert sind – z. B. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) = \tfrac{1}{x}} , oder die bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=0} zwar definiert, aber nicht beliebig oft differenzierbar sind – z. B. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) = x \sqrt{x}} , lässt sich ebenfalls keine maclaurinsche Reihe entwickeln.

Beispiele

Elementare Beispiele

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sin (x) = \sum_{n=0}^\infty (-1)^n\frac{x^{2n+1}}{(2n+1)!} = \frac{x}{1!}-\frac{x^3}{3!}+\frac{x^5}{5!}-\ldots = x-\frac{x^3}{6}+\frac{x^5}{120}-\ldots}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e^x = \sum_{n = 0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots = 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \frac{1}{24} x^4 + \dots}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text{artanh}(x) = \sum_{n = 0}^{\infty} \frac{1}{2n + 1}x^{2n + 1}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \arcsin(x) = \sum_{n = 0}^{\infty} \frac{(2n)!}{4^{n}(n!)^2 (2n + 1)}x^{2n + 1}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \exp[\exp(x)-1] = \sum_{n=0}^{\infty} \frac{B_n}{n!}x^{n}}

Nicht elementare Beispiele

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{2}{\pi}K(x) = \sum_{n = 0}^{\infty} \frac{[(2n)!]^2}{16^{n}(n!)^4}x^{2n}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vartheta_{00}(x)^{-1/6}\vartheta_{01}(x)^{-2/3}\biggl[\frac{\vartheta_{00}(x)^4 - \vartheta_{01}(x)^4}{16\,x}\biggr]^{-1/24} = \sum_{n=0}^{\infty} P(n)x^n}
  • Erzeugende Funktion der strikten Partitionszahlenfolge Q(n):
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vartheta_{00}(x)^{1/6}\vartheta_{01}(x)^{-1/3}\biggl[\frac{\vartheta_{00}(x)^4 - \vartheta_{01}(x)^4}{16\,x}\biggr]^{1/24} = \sum_{n=0}^{\infty} Q(n)x^n}

Mit dem Buchstaben ϑ werden die sogenannten Theta-Nullwertfunktionen ausgedrückt.

Umwandlung beliebiger Taylorreihen in Maclaurin-Reihen

Jede Taylorreihe, auch solche mit Entwicklungsstelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0 \neq 0} , kann als Maclaurin-Reihe aufgefasst werden. Dazu wird statt der Taylorreihe zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)} die Taylorreihe zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x_0+x)} betrachtet (Substitution):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x_0 + x) = \sum_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!} [(x_0 + x) - x_0]^n = \sum_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!} x^n.}

Durch die Verschiebung um Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -x_0} „zur Seite“ ist die neue Entwicklungsstelle gerade 0, wodurch es sich bei der neuen Taylorreihe um eine Maclaurin-Reihe handelt.

Beispiel: Die Taylorreihe zur natürlichen Logarithmusfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ln(x)} um die Entwicklungsstelle 1, nämlich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ln (x) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n}(x-1)^n, }

entspricht der Maclaurin-Reihe zu Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \ln(x+1).}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ln(x + 1) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n}x^n = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots. }

Einzelnachweise

  1. I. Bronstein, K. Semendjajew et al.: Taschenbuch der Mathematik. Verlag Harri Deutsch, Frankfurt am Main 2005, ISBN 3-8171-2006-0, S. 434.