Satz von Ptolemäus

aus Wikipedia, der freien Enzyklopädie
Im Sehnenviereck ABCD gilt: :Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \definecolor{V}{RGB}{148,0,211} \definecolor{B}{RGB}{0,0,255} \definecolor{R}{RGB}{204,0,0} {\color{V}AC}\cdot{\color{V}BD}={\color{B}AB}\cdot{\color{B}CD}+{\color{R}BC}\cdot{\color{R}AD}}
Ungleichung des Ptolemäus: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle AB\cdot CD+BC\cdot AD>AC\cdot BD}

Der Satz des Ptolemäus (nach Claudius Ptolemäus) ist ein Lehrsatz der Elementargeometrie, der eine Beziehung zwischen den Seiten und Diagonalen eines Sehnenvierecks beschreibt. Er lässt sich auffassen als Verallgemeinerung des pythagoreischen Lehrsatzes und ergibt sich selbst auch als Grenzfall des Satzes von Casey.

Aussage

Der Satz des Ptolemäus lautet:[1]

In einem Sehnenviereck ist das Produkt der Längen der Diagonalen gleich der Summe der Produkte der Längen gegenüberliegender Seiten.

In einem Sehnenviereck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \square ABCD} gilt also:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |AC|\cdot|BD|=|AB|\cdot|CD|+|BC|\cdot|AD|}

Zudem gilt auch die Umkehrung des Satzes von Ptolemäus, das heißt stimmt in einem konvexen Viereck das Produkt der Diagonalen mit der Summe der Produkte der gegenüberliegenden Seiten überein, so handelt es sich um ein Sehnenviereck. Für Vierecke, die keine Sehnenvierecke sind, gilt die folgende Aussage, die auch als Ungleichung des Ptolemäus bezeichnet wird:[1]

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \triangle ABC } ein Dreieck und D ein Punkt, der nicht auf dem Bogen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \widehat{AC}} des Umkreises liegt, so gilt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |AB|\cdot|CD|+|BC|\cdot|AD|>|AC|\cdot|BD|}

Elementargeometrischer Beweis

Datei:Ptolemy proof.svg
Ungleichung des Ptolemäus

Bei einem Sehnenviereck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \square ABCD} betrachte man das Dreieck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \triangle ABC } mit dem separaten Punkt D auf seinem Umkreis mit Radius r und das zugehörige Fußpunktdreieck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \triangle LMN} . Die Formel zur Berechnung der Seitenlängen eines Fußpunktdreieckes liefert dann für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \triangle LMN} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} &|MN|&=\frac{|AD|\cdot|BC|}{2r}\\ &|LN|&=\frac{|BD|\cdot|AC|}{2r}\\ &|LM|&=\frac{|CD|\cdot|AB|}{2r}\\ \end{align} }
Datei:Ptolemy inequality proof.svg
Ungleichung des Ptolemäus

Da D nun aber auf dem Umkreis von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \triangle ABC} liegt, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \triangle LMN} entartet und seine Seiten liegen auf der zugehörigen Simson-Gerade, so dass die zwei Seiten LM und NM sich zur dritten Seite LN ergänzen. Es gilt also:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |LM|+|NM|=|LN|}

Mit den obigen Gleichungen liefert dies:[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |AB|\cdot|CD|+|BC|\cdot|AD|=|AC|\cdot|BD|}

Liegt D nicht auf dem Umkreis, so gilt aufgrund der Dreiecksungleichung für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \triangle LMN} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |LM|+|NM|>|LN|}

Die obigen Gleichungen liefern damit dann die Ungleichung des Ptolemäus:[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |AB|\cdot|CD|+|BC|\cdot|AD|>|AC|\cdot|BD|}

Beweis des Ptolemäischen Lehrsatzes im Komplexen

Neben der Möglichkeit, den Beweis elementargeometrisch zu führen,[2][3] lässt sich der Ptolemäische Lehrsatz auch leicht mit Methoden der komplexen Analysis beweisen, indem man die Eigenschaften der komplexen Umkehrfunktion:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I: \; z \mapsto I(z) = \frac 1{z}}

ausnutzt.[4]

Die komplexe Umkehrfunktion zählt zu den Möbiustransformationen, welche in der komplexen Analysis als stetige Transformationen der erweiterten komplexen Zahlenebene behandelt werden.

(I) Vereinfachung des Problems

Zunächst darf man oBdA annehmen, dass die Figur, welche aus dem gegebenen Sehnenviereck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \square ABCD } und der zugehörigen Kreislinie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} besteht, eine geometrische Figur innerhalb der komplexen Zahlenebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex } darstellt[5].

Dabei darf man weiter annehmen, dass eine spezielle Figur mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = 0} vorliegt, für die also der Eckpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} mit dem Ursprung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 \in \Complex} zusammenfällt. Denn folgt der Satz für diesen speziellen Fall, so folgt er allgemein, da jede gegebene geometrische Figur der genannten Art kongruent zu einer solchen speziellen Figur ist. Eine derartige Kongruenz lässt sich mittels einer passend gewählten Verschiebung stets schaffen.

(II) Ausnutzung der geometrischen Eigenschaften der Umkehrfunktion

Wesentlich für den Beweis ist nun die Tatsache, dass für die Kreislinie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k } der punktierte Kreisbogen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \setminus \{ 0 \} } unter der Umkehrfunktion in eine Gerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g = \{ I(z): {z \in k} \wedge {z \neq 0} \}} , nämlich in die Bildgerade von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \setminus \{ 0 \} } unter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I } , übergeht.

Da nun auf dem punktierten Kreisbogen der Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C } zwischen den Punkten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D } liegt, gilt Entsprechendes für die drei Bildpunkte der Bildgeraden. Es liegt also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I(C) = \frac 1{C}} zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I(B) = \frac 1{B}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I(D) = \frac 1{D}} und gehört damit zu den Punkten der dazwischenliegenden Strecke.

(III) Eigentliche Berechnung

Aus (II) ergibt sich unter Benutzung der komplexen Betragsfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z \mapsto |z| = \sqrt{z \cdot \overline {z} } } unmittelbar:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left|\frac 1{D} - \frac 1{B}\right| = \left|\frac 1{D} - \frac 1{C}\right| + \left|\frac 1{C} - \frac 1{B}\right| }

und damit:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac {|B - D|}{|B| \cdot |D|} = \frac {|C - D|}{|C| \cdot |D|} + \frac {|B - C|}{|B| \cdot |C|} }

und dann nach Erweitern mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |B| \cdot |C| \cdot |D| }  :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |B - D| \cdot |C| = |C - D| \cdot |B| + |B - C| \cdot |D| }

und weiter wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = 0 } :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |A - C| \cdot |B - D| = |A - B| \cdot |C - D| + |B - C| \cdot |A - D| }

Dies aber ist nichts weiter als die oben behauptete und zu beweisende Identität.

Folgerung: Der Satz des Pythagoras

Jedes Rechteck ist ein Sehnenviereck, in welchem – mit den obigen Bezeichnungen – die Gleichungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{AB}= \overline{CD}, \overline{BC}= \overline{AD}, \overline{AC}= \overline{BD}} gelten. Da nun ein rechtwinkliges Dreieck sich stets derart zu einem Rechteck ergänzen lässt, dass die Hypotenuse des rechtwinkligen Dreiecks mit einer der beiden Rechteckdiagonalen und die beiden Katheten mit zwei aneinandergrenzenden Rechteckseiten zusammenfallen, zieht der Satz des Ptolemäus den Satz des Pythagoras nach sich.[6]

Verallgemeinerungen (Metrische Räume und Riemannsche Mannigfaltigkeiten)

In CAT(0)-Räumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,d)} gilt die Ptolemäische Ungleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(x, y)d(z, p) \le d(x, z)d(p, y) + d(x, p)d(y, z)} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x, y, z, p \in X} .

Für vollständige Riemannsche Mannigfaltigkeiten gilt auch die Umkehrung: wenn die Ptolemäische Ungleichung für alle Punkte gilt, dann handelt es sich um einen CAT(0)-Raum.[7]

Wenn eine Riemannsche Mannigfaltigkeit nichtpositive Schnittkrümmung hat, dann ist sie lokal ptolemäisch, d. h. zu jedem Punkt gibt es eine Umgebung, innerhalb derer die Ptolemäische Ungleichung gilt.[8]

Literatur

  • Erwin Just, Norman Schaumberger: Vector Approach to Ptolemy’s Theorem. Mathematics Magazine, Vol. 77, No. 5, 2004, S. 386–88 (JSTOR 3219205)
  • John Roe: Elementary Geometry (= Oxford science publications). Oxford University Press, Oxford [u. a.] 1993, ISBN 0-19-853457-4.
  • Anna Maria Fraedrich: Die Satzgruppe des Pythagoras (= Lehrbücher und Monographien zur Didaktik der Mathematik. Band 29). B.I.-Wissenschaftsverlag, Mannheim / Leipzig / Wien / Zürich 1994, ISBN 3-411-17321-1.
  • Klaus Gürlebeck, Klaus Habetha, Wolfgang Sprößig: Funktionentheorie in der Ebene und im Raum. Birkhäuser Verlag, Basel [u. a.] 2006, ISBN 978-3-7643-7369-6.
  • Helmut Karzel, Hans-Joachim Kroll: Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt 1988, ISBN 3-534-08524-8.
  • Hugo Fenkner, Karl Holzmüller: Mathematisches Unterrichtswerk. Nach den Richtlinien für die Lehrpläne der höheren Schulen Preußens neu bearbeitet von Dr. Karl Holzmüller. Geometrie. Ausgabe A in 2 Teilen. I. Teil. 12. Auflage. Verlag von Otto Salle, Berlin 1926.
  • Theophil Lambacher, Wilhelm Schweizer (Hrsg.): Lambacher-Schweizer. Mathematisches Unterrichtswerk für höhere Schulen. Geometrie. Ausgabe E. Teil 2. 13. Auflage. Ernst Klett Verlag, Stuttgart 1965.

Einzelnachweise

  1. a b c d H. S. M. Coxeter, S. L. Greitzer: Geometry Revisited. Math. Assoc. Amer., Washington DC 1967, S. 23, 41–42 (Auszug (Google))
  2. Hugo Fenkner, Karl Holzmüller: Mathematisches Unterrichtswerk. Nach den Richtlinien für die Lehrpläne der höheren Schulen Preußens neu bearbeitet von Dr. Karl Holzmüller. Geometrie. Ausgabe A in 2 Teilen. I. Teil. 12. Auflage. Verlag von Otto Salle, Berlin 1926, S. 170.
  3. Theophil Lambacher, Wilhelm Schweizer (Hrsg.): Lambacher-Schweizer. Mathematisches Unterrichtswerk für höhere Schulen. Geometrie. Ausgabe E. Teil 2. 13. Auflage. Ernst Klett Verlag, Stuttgart 1965, S. 156.
  4. John Roe: Elementary Geometry (= Oxford science publications). Oxford University Press, Oxford [u. a.] 1993, ISBN 0-19-853457-4, S. 123 (Auszug).
  5. Helmut Karzel, Hans-Joachim Kroll: Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt 1988, ISBN 3-534-08524-8, S. 96.
  6. Anna Maria Fraedrich: Die Satzgruppe des Pythagoras (= Lehrbücher und Monographien zur Didaktik der Mathematik. Band 29). B.I.-Wissenschaftsverlag, Mannheim / Leipzig / Wien / Zürich 1994, ISBN 3-411-17321-1, S. 63–64.
  7. S. M.Buckley, K. Falk, D. J. Wraith: Ptolemaic Spaces and CAT(0). (PDF; 181 kB) In: Glasg. Math. J., 51, 2009, no. 2, S. 301–314.
  8. D. C. Kay: Ptolemaic metric spaces and the characterization of geodesics by vanishing metric curvature. Ph.D. thesis, Michigan State Univ., East Lansing MI 1963