Wirbelstärke

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 19. Januar 2021 um 11:52 Uhr durch imported>Anonym~dewiki(31560) (→‎Potentielle Vortitzität).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die Wirbelstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec {\omega}} bzw. bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec {\zeta}} beziffert eine zentrale Größe der Strömungsmechanik und der Meteorologie, indem sie dem Strudel und den kreis- oder spiralförmigen Strömungen ein Feld von Geschwindigkeiten zuordnet. Die gleichwertige Bezeichnung Vortizität von lateinisch vortex = „Wirbel, Strudel“, englisch Vorticity, wird mit Wirbelhaftigkeit übersetzt.

In der Strömungsmechanik werden kleine Unterschiede in Geschwindigkeit und Richtung von Gasen und Flüssigkeiten als Scherung bezeichnet. Die Stromlinien sind anderseits geometrische Hilfsmittel zur anschaulichen Beschreibung einer Strömung als gerichtete Bewegung von Teilchen. Schließlich ist die Viskosität die Zähflüssigkeit oder Zähigkeit von Fluiden, also der Widerstand des Fluids gegenüber Scherung.

Anschaulich entspricht die Wirbelstärke der Tendenz eines Fluidelements zur Eigendrehung um eine Achse, aus der eine Zirkulation von fließenden oder strömenden Medien in einem geschlossenen Gebiet entsteht. Weiter wird das Mittel der quadratischen Wirbelstärke über einer bestimmten Fläche als Enstrophie bezeichnet, welche z. B. das Strömungsverhalten von Glas-Doppelfassaden beschreibt.

Formale Notation

Die Wirbelstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec {\omega}} , in der Meteorologie angelehnt an die Zirkulation mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec {\zeta}} bezeichnet, ist definiert als die Rotation der Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec {u}} eines Vektorfelds:

Sie hat die SI-Einheit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{1}{\mathrm s}} und ist wie jede Rotation eines Vektorfelds ein Pseudovektorfeld.

Weil sich einem abgeschlossenen System die Erhaltungsgrößen nicht ändern, ist die Wirbelstärke gleich der flächenbezogenen Zirkulationsrate Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma} :[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma := \oint_{\partial A} \vec{v}\cdot\mathrm{d} \vec r = \int_{A} \; \operatorname{rot}(\vec v) \cdot \mathrm{d} \vec A}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow \vec{\omega} \cdot \vec{n} = \frac{\mathrm d \Gamma}{\mathrm dA}}

mit der Normalen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} .

In der Meteorologie liegen – außer bei echt dreidimensionalen Wirbeln wie Tornados – oft zweidimensionale Geschwindigkeitsfelder vor. Die entsprechende Vortizität zeigt in z-Richtung und lautet

.

Hydrodynamik

In der Hydrodynamik ist die Vortizität die Rotation der Fluidgeschwindigkeit, die in Richtung der Rotationsachse bzw. für zweidimensionale Flüsse senkrecht zur Flussebene orientiert ist. Für Fluide mit einer festen Rotation um eine Achse (z. B. einen rotierenden Zylinder) ist die Wirbelstärke gleich der doppelten Winkelgeschwindigkeit ω0 des Fluidelements:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{\omega} = 2 \vec \omega_0}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{\omega} = \vec{\nabla} \times \vec{u} = \vec{\nabla} \times \left( \vec \omega_0 \times \vec{r} \right) = \vec \omega_0 \left( \vec{\nabla} \cdot \vec{r} \right) - \left( \vec \omega_0 \cdot \vec{\nabla} \right) \vec{r} =3 \vec\omega_0 - \vec \omega_0 =2 \vec \omega_0}

Fluide ohne Wirbelstärke heißen rotations- oder wirbelfrei mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{\omega} = 0 \; \text{bzw.} \; \zeta = 0} . Allerdings können auch die Fluidelemente eines solchen rotationsfreien Fluids eine Winkelgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec \omega_0 \neq 0} besitzen, d. h. sich auf gekrümmten Bahnen bewegen, vgl. die folgende Abbildung, wobei der Buchstabe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega} im Text für die Wirbelstärke und in der Abbildung für die Winkelgeschwindigkeit steht:

Vortizität und Winkelgeschwindigkeit

Man betrachtet ein infinitesimal kleines, quadratisches Gebiet einer Flüssigkeit. Wenn dieses Gebiet rotiert, ist die Wirbelstärke der Strömung ungleich null. Die Wirbelstärke bezieht sich auf erzwungene Wirbel mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{\omega} = \operatorname{rot} \vec{u} \neq 0} .

Die Vortizität ist ein geeignetes Mittel für Flüssigkeiten mit kleiner Viskosität. Dann kann die Vortizität an fast allen Orten der Strömung als gleich null angesehen werden. Dies ist offensichtlich für zweidimensionale Strömungen, in denen der Fluss auf der komplexen Ebene dargestellt werden kann. Derartige Probleme können meist analytisch gelöst werden.

Für jede Strömung können die bestimmenden Gleichungen durch einfaches Ersetzen auf die Wirbelstärke anstatt auf die Geschwindigkeit bezogen werden. Dies führt zur Wirbeldichtegleichung, die für inkompressible, nichtviskose Flüssigkeiten wie folgt lautet:[2]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm D\vec{\omega}} {\mathrm Dt} = (\vec{\omega} \cdot \vec \nabla) \vec u}

Auch für reale Strömungen (dreidimensional, endliche Reynoldszahl, d. h. Viskosität ungleich Null) ist die Betrachtung des Flusses über die Wirbelstärke mit Einschränkungen nutzbar, wenn man annimmt, dass das Vortizitätsfeld als eine Anordnung einzelner Wirbel darstellbar ist. Die Diffusion dieser Wirbel durch die Strömung wird durch die Wirbeltransportgleichung beschrieben:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm D\vec{\omega}} {\mathrm Dt} = (\vec{\omega} \cdot \vec \nabla) \vec u + \frac{\eta}{\rho} \cdot (\nabla^2 \vec{\omega})}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla ^2 } den Laplace-Operator bezeichnet.[3] Hier wurde die Wirbeldichtegleichung durch den Diffusionsterm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\eta}{\rho} \cdot (\nabla^2 \vec{\omega})} ergänzt.

Für hochviskose Strömungen, beispielsweise Couette-Strömungen, kann es sinnvoller sein, direkt das Geschwindigkeitsfeld des Fluids anstelle der Wirbelstärke zu betrachten, da die hohe Viskosität zu einer sehr starken Diffusion der Wirbel führt.

Die Wirbellinie hängt direkt mit der Wirbelstärke zusammen, indem Wirbellinien Tangenten an die Wirbelstärke sind. Die Gesamtheit der durch ein Flächenelement gehenden Wirbellinien wird als Wirbelfaden bezeichnet. Die Helmholtzschen Wirbelsätze sagen aus, dass der Wirbelfluss Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \iint \vec{\omega} \cdot \mathrm d\vec{A}} sowohl zeitlich als auch räumlich konstant ist.

Meteorologie

In der Meteorologie wird mit der Vortizität hauptsächlich die Rotation von Luft um eine Achse beschrieben.

Die absolute Vortizität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega_\mathrm{abs}} eines Volumenelements oder eines Körpers in der Meteorologie setzt sich zusammen aus zwei Summanden, der planetaren Vortizität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{c}} und der relativen Vortizität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega_\mathrm{rel}} bzw. :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \omega_\mathrm{abs} = \colon \eta &= f_\mathrm{c} + \omega_\mathrm{rel}\\ &= f_\mathrm{c} + \zeta \end{align}}

Aufgrund der Erddrehung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega_0} erfährt jeder Körper in Erdnähe eine Rotation um die Erdachse und besitzt somit eine feste Vortizität. Diese wird bestimmt durch den Coriolisfaktor

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{c} = 2 \omega_0 \sin \varphi \approx 10^{-4} \, \frac{1}{\mathrm{s}}} ,

der vom Breitengrad abhängt, und als planetare Vortizität bezeichnet.

Die relative Vortizität ist die mit der Eigendrehung des Körpers zusammenhängende Größe. Da in der Meteorologie meist zweidimensionale Strömungsfelder auftreten, wird sie oft durch die Rotation in zwei Dimensionen ausgedrückt:

Die Richtung des Wirbelstärke-Vektors lässt sich mit der Korkenzieherregel bestimmen: Dreht sich das Fluid gegen den Uhrzeigersinn, so zeigt die Wirbelstärke nach oben und ist positiv. Auf der Nordhalbkugel wird Rotation gegen den Uhrzeigersinn, also mit positivem , als zyklonale Rotation bezeichnet und mit negativem als antizyklonale Rotation. Auf der Südhalbkugel gilt dies jeweils entsprechend umgekehrt.

In natürlichen Koordinaten ergibt sich:

mit[4]

  • der Krümmungsvortizität
  • der Scherungsvortizität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \zeta_S := - \frac{\partial v}{\partial n} }
    • den Komponenten n und s des Koordinatensystems.

Potentielle Vortizität

Die Helmholtzschen Erhaltungssätze für den Wirbelfluss führen zur potentiellen Vortizität PV:[5]

Durch Kombination der Wirbeldichtegleichung mit der Kontinuitätsgleichung kann man zeigen, dass die potentielle Vortizität zeitlich erhalten ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm d PV}{\mathrm dt} = 0}

Anmerkungen

Die Literatur enthält auch die Definition[6][7]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{\omega} = \frac{1}{2}\operatorname{rot}\vec{u}}

Die Begriffe Wirbelstärke, Wirbeldichte, Wirbelhaftigkeit, Wirbeligkeit, Wirbelung, Vortizität, Wirbelfaden sowie die Benennung der Wirbeldichte- und Wirbeltransportgleichung sind nicht klar definiert und somit schwer gegeneinander abgrenzbar. In der Literatur finden sich teilweise widersprüchliche Angaben und Definitionen.

Literatur

  • Hans Stephani, Gerhard Kluge: Theoretische Mechanik. Spektrum Akademischer Verlag, Heidelberg 1995, ISBN 3-86025-284-4
  • Ludwig Bergmann, Clemens Schaefer: Lehrbuch der Experimentalphysik. Band 1: Mechanik, Relativität, Wärme. de Gruyter, Berlin 1998. ISBN 3-11-012870-5
  • Lew D. Landau, Jewgeni M. Lifschitz: Lehrbuch der theoretischen Physik. Band 6: Hydrodynamik. Verlag Harri Deutsch, Frankfurt am Main 2007. ISBN 978-3-8171-1331-6
  • Koji Ohkitani: Elementary Account Of Vorticity And Related Equations. Cambridge University Press, 2005. ISBN 0-521-81984-9
  • Andrew J. Majda, Andrea L. Bertozzi: Vorticity and Incompressible Flow. Cambridge University Press, 2002. ISBN 0-521-63948-4

Einzelnachweise

  1. Ludwig Bergmann, Clemens Schaefer: Lehrbuch der Experimentalphysik, Band 1: Mechanik, Relativität, Wärme, S. 564. de Gruyter, Berlin 1998. ISBN 3-11-012870-5
  2. Roland Netz: Mechanik der Kontinua. (PDF; 671 kB) Abgerufen am 25. Mai 2011.
  3. Wirbeltransportgleichungen. (Nicht mehr online verfügbar.) Archiviert vom Original am 21. September 2008; abgerufen am 25. Mai 2011.
  4. Vorticity. Abgerufen am 25. Mai 2011.
  5. Atmosphärenphysik. (PDF; 337 kB) (Nicht mehr online verfügbar.) Archiviert vom Original am 18. Februar 2015; abgerufen am 25. Mai 2011.
  6. scienceworld.wolfram.com. Abgerufen am 25. Mai 2011.
  7. Hans Stephani, Gerhard Kluge: Theoretische Mechanik. Spektrum Akademischer Verlag, Heidelberg 1995, ISBN 3-86025-284-4, S. 273.