Heisenberg-Modell

aus Wikipedia, der freien Enzyklopädie

Das Heisenberg-Modell (nach Werner Heisenberg) in der quantenmechanischen Formulierung ist ein in der theoretischen Physik viel benutztes mathematisches Modell zur Beschreibung von Ferromagnetismus (sowie Antiferromagnetismus und Ferrimagnetismus) in Festkörpern. Ziel der Betrachtung ist es, experimentell beobachtete Effekte wie die spontane Magnetisierung und die kritischen Exponenten an den Phasenübergängen zu modellieren.

Das Modell ist zur qualitativen Beschreibung von Ferromagnetismus in Isolatoren geeignet, versagt aber bei den meisten Metallen (hier ist das Hubbard-Modell besser geeignet).

Formulierung

1928 haben Werner Heisenberg[1] und Paul Dirac[2] erkannt, dass Ferromagnetismus in einem Festkörper durch einen effektiven Hamiltonoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_{\text{Heis}}} beschrieben werden kann, der die quantenmechanischen Ortsfunktionen nicht enthält, da er lediglich aus wechselwirkenden lokalisierten Elektronenspins auf dem Kristallgitter aufgebaut ist. Die Wechselwirkung ist dabei (zunächst) reduziert auf benachbarte Spins (Nächste-Nachbar-Wechselwirkung). Im Gegensatz zum klassischen Heisenberg-Modell werden die Spins durch Vektoroperatoren ausgedrückt und gehorchen den Regeln der Quantenmechanik:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_{\text{Heis}} = - J\sum_{\langle i,j \rangle}\vec{S_i} \cdot \vec{S_j} \qquad \text{mit } i,j \, \mathrm{n\ddot achste\ Nachbarn}}

Dabei

  • sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec S_i} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec S_j} die quantenmechanischen Spinoperatoren zu gegebener Spinquantenzahl (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s \in \{1/2,\, 1,\, 3/2,\, 2,\, \ldots\}} )
  • beziehen sich die Indizes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} und auf die Gitterpositionen, wobei das Gitter eine Kette (eindimensionales Heisenberg-Modell), ein zweidimensionales Gitter (z. B. ein hexagonales Gitter) oder eine dreidimensionale Anordnung (z. B. ein kubisches Gitter) sein kann. Der Spin hingegen ist beim Heisenberg-Modell immer dreidimensional, weshalb es auch als Spezialfall des n-Vektor-Modells mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = 3} bezeichnet wird.
  • wird die Austauschwechselwirkung zwischen den lokalisierten Spins durch die Coulomb-Abstoßung und das Pauli-Prinzip verursacht und bei Beschränkung auf Nächste-Nachbar-Wechselwirkung und Isotropie (s. u.) mit einer einzigen Kopplungskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J} ausgedrückt, der Austauschenergie.

Das Modell kann durch eine Verallgemeinerung der Heitler-London-Näherung für die Bildung zweiatomiger Moleküle begründet werden (siehe das einschlägige Unterkapitel in Magnetismus). Für eindimensionale Systeme kann es exakt gelöst werden (s. u.); in zwei und drei Dimensionen gibt es dagegen nur genäherte Lösungen, z. B. mit Quanten-Monte-Carlo-Methoden.

Erläuterungen

Der Ferromagnetismus von Isolatoren wird bewirkt von lokalisierten magnetischen Momenten, die einer unvollständig gefüllten Elektronenschale (3d, 4d, 4f oder 5f) zuzuschreiben sind. Diesen lokalisierten magnetischen Momenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{m}_i} ist ein Drehimpuls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{J}_i} zugeordnet, der mit dem jeweiligen Spin Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{S}_i} ausgedrückt werden kann:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \vec{m_i} &= \mu_{\mathrm B} \, g_J \, \vec{J_i}\\ &= \mu_{\mathrm B} \, g_J \, \frac{\vec{S_i}}{g_J - 1} \end{align}}

mit

  • dem Bohrschen Magneton Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_{\mathrm B}}
  • dem Landé-Faktor
  • dem Spinvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{S_i}} , der gegeben ist über die Spin-1/2-Operatoren.

Die Austauschwechselwirkung zwischen den magnetischen Momenten kann so durch die zugehörigen Spins ausgedrückt werden. Die Austauschwechselwirkung simuliert also die Coulombabstoßung und das Pauliprinzip. Die Kopplungskonstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J} zwischen den lokalisierten Spins werden daher auch Austauschintegrale genannt. Man nimmt an, dass die Austauschintegrale nur für benachbarte Spins merklich von null verschieden sind. Insgesamt erhält man so also einen effektiven Hamiltonoperator, der darauf ausgelegt ist, lediglich den Ferromagnetismus bei Isolatoren zu erklären:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} H_{\text{Heis}}&=-J\sum_{\langle i,j \rangle}\vec{S_i}\cdot\vec{S_j} \qquad \text{mit } i,j \mathrm{\ n\ddot achste\ Nachbarn}\\ &=-J\sum_{\langle i,j \rangle}\left(S^x_iS^x_j+S^y_iS^y_j+S^z_iS^z_j\right) \\ &=-J\sum_{\langle i,j \rangle}\left[\frac{1}{2}\left(S^+_iS^-_j+S^-_iS^+_j\right)+S^z_iS^z_j\right] \end{align} }

Verallgemeinerungen

Das Heisenberg-Modell kann verallgemeinert werden, indem man die Kopplungskonstante richtungsabhängig macht (d. h. indem man von isotropen zu anisotropen Systemen übergeht).

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} H_{\text{verallg. Heis}}&=-\sum_{\langle i,j \rangle}\left( J^x S^x_iS^x_j+J^y S^y_iS^y_j+J^z S^z_iS^z_j \right) \qquad \text{mit } i,j\; \mathrm{n\ddot achste}\text{ Nachbarn} \end{align} }

Ein Spezialfall des verallgemeinerten Heisenberg-Modells ist das XXZ-Modell, das seinen Namen daher hat, dass die Kopplungskonstante in zwei Richtungen übereinstimmt (d. h. Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle J_{x}=J_{y}=J} ) und in z-Richtung davon abweicht (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J_z=\Delta} ):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} H_{\text{XXZ}}&=-\sum_{\langle i,j \rangle}\left[ J\left( S^x_iS^x_j+S^y_iS^y_j \right)+\Delta S^z_iS^z_j \right] \qquad \text{mit } i,j\; \mathrm{n\ddot achste} \text{ Nachbarn}\\ &=-\sum_{\langle i,j \rangle}\left[\frac{J}{2}\left(S^+_iS^-_j+S^-_iS^+_j\right)+\Delta S^z_iS^z_j\right] \end{align} }

Das Heisenberg-Modell und seine Spezialfälle werden oft im Zusammenhang mit einem angelegten Magnetfeld in z-Richtung betrachtet. Der Hamiltonian lautet dann:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} H_{\text{verallg. Heis,h}}&=-\sum_{\langle i,j \rangle}\left( J^xS^x_iS^x_j+J^yS^y_iS^y_j+J^zS^z_iS^z_j\right) - h \sum_i S^z_i \end{align} }

Eine weitere Verallgemeinerung beinhaltet die Einbeziehung von Kopplungen nicht nur zwischen nächsten Nachbarn sowie von Inhomogenitäten, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J\rightarrow J_{ij}} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} H_{\text{verallg. Heis, inhom.}}&=-\sum_{\langle i,j \rangle}\left( J_{ij}^xS^x_iS^x_j+J_{ij}^yS^y_iS^y_j+J_{ij}^zS^z_iS^z_j\right) \quad \text{mit } i,j\;\mathrm{ Gitterpl\ddot atze} \end{align} }

Die Übergänge zum XY-Modell und zum Ising-Modell lassen sich am besten im n-Vektor-Modell darstellen.

Modell im k-Raum

Zur Analyse des Modells und zur Betrachtung der Anregungen ist es sinnvoll, das Modell im k-Raum zu betrachten. Die Transformation (diskrete Fouriertransformation) für die Spinoperatoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in \{x,y,z,+,-\}} lautet:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^a(\vec{k})=\sum_i e^{i\vec{k}\cdot \vec{R}_i}S^a_i}

Das verallgemeinerte Heisenbergmodell im Magnetfeld ohne Richtungsabhängigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (J^x_{ij}=J^y_{ij}=J^z_{ij})} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J_{ij}=J_{ji}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J_{ii}=0} lässt sich dann schreiben als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} H_{\text{heis,k}}&=-\frac{1}{N}\sum_{\vec{k}}J(\vec{k})\left( S^+(\vec{k})S^-(-\vec{k})+S^z(\vec{k})S^z(-\vec{k})\right)-hS^z(0) \end{align} ,}

wobei auch die Austauschintegrale von der Kreiswellenzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{k}} abhängen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J(\vec{k}) = \frac{1}{N} \sum_{ij} J_{ij} e^{i\vec{k} \cdot (\vec{R}_i - \vec{R}_j)}}

Grundzustand

In diesem Abschnitt wird der Grundzustand des verallgemeinerte Heisenberg-Modells im Magnetfeld ohne Richtungsabhängigkeit betrachtet. Der Grundzustand ist der Eigenzustand des Systems mit der geringsten Energie. Dieser ist stark abhängig von den Vorzeichen der Kopplungskonstanten:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \text{alle} \quad J_{ij}>0: & \qquad \text{Ferromagnet}\\ \text{alle} \quad J_{ij}<0: & \qquad \text{Anti-Ferromagnet/Ferrimagnet} \end{align} }

Ferromagnetischer Grundzustand

Für ist es für die Spins energetisch günstiger, sich in dieselbe Richtung auszurichten, und man spricht von einem ferromagnetischen Grundzustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |F\rangle} . Unter Drehung aller Spinvektoren ändert sich das Heisenberg-Modell nicht, es ist also invariant unter einer Rotation. Aufgrund der Rotationsinvarianz ist keine Richtung ausgezeichnet, daher wird die Ausrichtung in z-Richtung angenommen. Die Richtung im Festkörper wird durch Anisotropien oder durch ein schwaches angelegtes Magnetfeld bestimmt. Spezialisiert man noch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J_0 = \sum_{i}J_{ij} = \sum_{j}J_{ij},}

dann kann die Energie des Grundzustands angegeben werden als:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} H |F\rangle = &E_0|F\rangle \\ \text{mit} \qquad &E_0 = -NJ_0 \hbar^2S^2 - NhS \end{align} }

Dabei wurde der Eigenwert des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^z_i} -Operators als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^z_i|F\rangle = \hbar S|F\rangle} benutzt. Für das Spin-1/2-Heisenberg-Modell ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S = 1/2} .

Ferri- bzw. antiferromagnetischer Grundzustand

Für ist es energetisch günstiger, wenn benachbarte Spins in unterschiedliche Richtungen zeigen. Der Grundzustand ist daher stark vom unterliegenden Kristallgitter abhängig, er kann u. a. antiferromagnetisch oder ferrimagnetisch sein. Für spezielle Kristallgitter kann es zu magnetischer Frustration kommen, siehe geometrische Frustration und Spin-Glas.

Magnonen und Spinwellen

In diesem Abschnitt werden die Anregungen aus dem ferromagnetischen Grundzustand des verallgemeinerten Heisenberg-Modells im Magnetfeld ohne Richtungsabhängigkeit betrachtet. Die Anregungszustände werden dem Quasiteilchen Magnon zugeordnet. Es handelt sich dabei um kollektive Anregungen des gesamten Kristallgitters, die demnach auch als Spinwellen bezeichnet werden.

Die einmalige Anwendung des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^-(\vec{k})} -Operators auf den ferromagnetischen Grundzustand gibt einen angeregten Eigenzustand des Heisenberg-Modells und wird (normierter) Ein-Magnonenzustand genannt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\vec{k}\rangle = \frac{1}{\hbar\sqrt{2SN}}S^ - (\vec{k})|F\rangle}

Die zugehörige Energie des Zustands ist gegeben als:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E(\vec{k}) = E_0 + \hbar \omega(\vec{k}) \qquad \text{mit} \qquad \hbar \omega(\vec{k}) = \hbar h + 2S\hbar^2(J_0 - J(\vec{k}))}

Die Anregungsenergie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hbar \omega(\vec{k})} wird dem Magnon-Quasiteilchen zugeschrieben. Betrachtet man den Erwartungswert des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^z_i} -Operators auf diesen Zustand, so erhält man:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle \vec{k}|S^z_i|\vec{k} \rangle = \hbar \left( S - \frac 1{N} \right)}

Dabei ist die linke Seite der Gleichung nicht mehr vom Platz i abhängig. Anschaulich bedeutet dies, dass die Anregung aus dem Grundzustand (Ein-Magnonenzustand) nicht durch das einfache Umklappen eines Spins auf einem Gitterplatz erzeugt wird, sondern dass der Ein-Magnonenzustand über das Gitter gleichmäßig verteilt ist. Daher wird der Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\vec{k}\rangle} als kollektive Anregung angesehen und als Spinwelle bezeichnet.

1D-Heisenberg-Modell

Im eindimensionalen Heisenberg-Modell sind die Spins aufgereiht auf einer Kette. Bei periodischen Randbedingungen ist die Kette zu einem Ring geschlossen. Die Eigenzustände und Eigenenergien für das eindimensionale Heisenberg-Modell wurden 1931 von Hans Bethe[3] mit dem Bethe-Ansatz exakt bestimmt.

Eigenvektoren und Eigenzustände

Da der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_z^\text{tot}} -Operator mit dem Hamiltonoperator kommutiert, zerfällt der ganze Hilbertraum in verschiedene Unterräume, die einzeln diagonalisiert werden können.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [S_z^\text{tot},H]=\sum^N_{i=1}[S^z_i,H]=0}

Die verschiedenen Unterräume können durch ihre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_z^\text{tot}=-N \dots N} Quantenzahlen beschrieben werden. Das heißt, dass die Eigenvektoren Superpositionen aus Basiszuständen mit derselben Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_z^\text{tot}} Quantenzahl sind. Im Bethe-Ansatz werden diese Zustände mittels der umgeklappten Zustände vom ferromagnetischen Grundzustand klassifiziert. Zum Beispiel wird der Zustand mit zwei umgeklappten Spins (also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^\text{tot}_z=N-2} ) an den Gitterplätzen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_2} angegeben als:

Die Eigenvektoren in einem Unterraum mit einer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_z} Quantenzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_z=N-r} sind Superpositionen aus allen möglichen Zuständen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |n_1, n_2, \dots, n_{N-r}\rangle:}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\Psi\rangle = \sum^N_{n1 < n2 < \dots < n_r}a(n_1, n_2, \dots, n_r)|n_1, n_2, \dots, n_r\rangle }

Die Koeffizienten sind ebene Wellen und durch den Bethe-Ansatz gegeben:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a(n_1, \dots, n_r) = \sum_{P\in S_r}\exp\left(i\sum^r_{j=1}k_{P_j}n_j+i\sum_{i<j}\theta_{P_iP_j} \right) }

Die Parameter können über die Gleichungen des Bethe-Ansatzes bestimmt werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{alignat}{2} 2 \cot \frac{\theta_{ij}}{2}&=\cot\frac{k_i}{2}-\cot\frac{k_j}{2} &\qquad \text{mit}\quad& i,j = 1, \dots, r \\ Nk_i&=2\pi\lambda_i+\sum_{j \neq i}\theta_{ij}&&\lambda_i = {1, \dots, N-1} \end{alignat} }

Die Eigenvektoren sind gegeben durch alle Kombinationen der Bethe-Quantenzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\lambda_1, \dots,\lambda_r)} , die die Gleichungen des Bethe-Ansatzes erfüllen. Eine Klassifikation der Eigenvektoren ist also über die Bethe-Quantenzahlen möglich. Die Bestimmung aller Eigenvektoren ist allerdings nicht trivial. Die zugehörige Energie des Zustands ist gegeben als:

Jordan-Wigner-Transformation

Das 1D-Heisenberg-Modell kann bei periodischen Randbedingungen mittels einer Jordan-Wigner-Transformation auf spinlose Fermionen auf einer Kette mit lediglich nächster Nachbarwechselwirkung abgebildet werden. Der Hamiltonian Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_{\text{Heis}}} des 1D-Heisenberg Modells kann demnach geschrieben werden als:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} H_{\text{Heis}}&=-J\sum^N_{n=1}\vec{S}_n\cdot \vec{S}_{n+1}=-J\sum^N_{n=1}\left[\frac{1}{2}(S_n^+S^-_{n+1} + S_n^-S^+_{n+1})+S^z_nS^z_{n+1} \right] \\ &= -J\sum^N_{i=1}\left[ \left(c^\dagger_i c_{i+1} +\text{h.c}\right) + \left( c^\dagger_i c_i - \frac{1}{2}\right)\left(c^\dagger_{i+1} c_{i+1} - \frac{1}{2}\right) \right]\\ &= H_0 + H_J \end{align} }

Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_i,c^\dagger_i} sind Erzeugungs- und Vernichtungsoperatoren für spinlose Fermionen.

Literatur

  • Wolfgang Nolting: Grundkurs Theoretische Physik. Band 7 – Vielteilchen-Theorie. Springer Verlag.

Weblinks

Quellen

  1. W. Heisenberg: Zur Theorie des Ferromagnetismus. In: Zeitschrift für Physik. Band 49, Nr. 9, 1928, S. 619–636, doi:10.1007/BF01328601.
  2. Paul Dirac: On the Theory of Quantum Mechanics. In: Proc. Roy. Soc. London A. Band 112, 1926, S. 661–677.
  3. H. Bethe: Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. (On the theory of metals. I. Eigenvalues and eigenfunctions of the linear atom chain), Zeitschrift für Physik A, Vol. 71, S. 205–226 (1931). doi:10.1007/BF01341708.