Singuläre Homologie
Die Singuläre Homologie ist eine Methode der algebraischen Topologie, die einem beliebigen topologischen Raum eine Folge abelscher Gruppen zuordnet. Anschaulich gesprochen zählt sie die verschieden-dimensionalen Löcher eines Raumes. Gegenüber den ähnlich gearteten Homotopiegruppen hat die singuläre Homologie den Vorteil, dass sie wesentlich einfacher zu berechnen ist und somit für viele Anwendungen die effektivste algebraische Invariante darstellt. Definiert ist sie als die Homologie zum singulären Kettenkomplex.
Simpliziale Homologie
Die historischen Wurzeln der singulären Homologie liegen in der simplizialen Homologie. Sei hierzu ein simplizialer Komplex, das heißt eine Menge von Simplizes, so dass jede Seitenfläche eines der Simplizes wieder in dieser Menge liegt. Einfache Beispiele sind Polygone und Polyeder. Nach einem Satz der Topologie kann man jede differenzierbare Mannigfaltigkeit triangulieren, also als einen simplizialen Komplex (SK) auffassen.
Das Ziel ist nun, aus diesem simplizialen Komplex einen Kettenkomplex zu machen, von dem man dann die Homologie nimmt. Hierzu sei die freie abelsche Gruppe über der Menge der -Simplizes des simplizialen Komplexes. Die Randabbildung in SK bildet jeden Simplex auf die alternierende Summe seiner Seitenflächen ab, das heißt
wobei die alternierenden Vorzeichenfaktoren auch als „geometrische Orientierungsgrößen“ interpretiert werden können.
Die Homologie dieses Kettenkomplexes heißt dann die simpliziale Homologie von .
Geschichtlicher Überblick
Die Definition der simplizialen Homologie hat zwei wesentliche Probleme. Das eine ist, dass nicht jeder topologische Raum eine Darstellung als simplizialer Komplex hat. Das zweite und gewichtigere ist, dass der gleiche Raum zwei verschiedene Darstellungen als simplizialer Komplex haben kann und damit a priori die simpliziale Homologie keine topologische Invariante des Raumes darstellt. Historisch war der erste Lösungsversuch zu diesem Problem die sogenannte Hauptvermutung, die Steinitz und Tietze zu Beginn des 20. Jahrhunderts aufstellten. Diese besagt, dass zwei Triangulierungen eines Raums immer eine gemeinsame Verfeinerung besitzen. Die Hauptvermutung wurde jedoch 1961 von Milnor widerlegt.
Die Lösung des Problems nahm jedoch schon in den Dreißigern und Vierzigern durch die Arbeiten von Lefschetz und Eilenberg Gestalt an. Sie definierten die singuläre Homologie. Diese ist im Grundgedanken ähnlich wie die simpliziale Homologie, nimmt jedoch als ihren Kettenkomplex den sogenannten singulären Kettenkomplex.
Definition
Singulärer Kettenkomplex
Sei ein topologischer Raum. Mit wird der -(euklidische) Simplex
bezeichnet ( affin unabhängige Punkte des ). Ein singulärer -Simplex in ist eine stetige Abbildung .
Mit wird die freie abelsche Gruppe, die durch die Menge aller singulären -Simplizes in erzeugt wird, bezeichnet. Ein Element von ist also eine formale Linearkombination von singulären Simplizes und wird singuläre -Kette genannt. Die Gruppe heißt singuläre Kettengruppe der Dimension .
Für ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma \in C_p(X)} wird durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_p(\sigma) = +\sigma|[v_1,\dots,v_p] - \sigma|[v_0, v_2,\dots, v_p] + \cdots \pm \sigma|[v_0,\dots, v_{p-1}] }
ein Homomorphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_p \colon C_p(X) \to C_{p-1}(X)} definiert. Dies ergibt einen Randoperator, das heißt, es gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_p \partial_{p+1} = 0} . Somit ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ldots \stackrel{\partial_3}{\longrightarrow} C_{2}(X) \stackrel{\partial_2}{\longrightarrow} C_1(X) \stackrel{\partial_1}{\longrightarrow} C_0(X) }
ein Kettenkomplex, der singulärer Kettenkomplex genannt wird.
Singuläre Homologie
Die Homologie dieses Kettenkomplexes nennt man singuläre Homologie von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} oder auch schlicht die Homologie von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und man bezeichnet die Homologiegruppen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_p(X) := \ker (\partial_p) / \mathop{\rm im}(\partial_{p+1})}
auch präzise als die singulären Homologiegruppen. Für jeden simplizialen Komplex ist sie isomorph zur simplizialen Homologie.
Die Elemente von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_*(X)} werden als Homologieklassen bezeichnet.
Reduzierte Homologie
In vielen Sätzen der Homologietheorie spielt die 0-te Homologe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_0(X)} eine Sonderrolle, weshalb es für eine einheitliche Formulierung von Sätzen und Beweisen oft nützlich ist, die reduzierte Homologie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{H}_*(X)} zu betrachten. Diese ist definiert durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{H}_i (X)=H_i(X)} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\ge 1}
und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{H}_0(X)=\ker(\epsilon)/\mathop{\rm im}(\partial_1)} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon:C_0(X)\rightarrow\Z} die durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon\left(\sum_{i=1}^rn_ix_i\right)=\sum_{i=1}^rn_i}
definierte Augmentierung des Kettenkomplexes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (C_*(X),\partial_*)} ist. Es gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_0(X)\simeq \tilde{H}_0(X)\oplus\Z} .
Relative Homologie und Abbildungen
Man kann die singuläre Homologie nicht nur von einem Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} , sondern auch von einem Raumpaar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,A)} , d. h. von einem Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und einem in ihm enthaltenen Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\subset X} bilden. Hierzu setzt man den Kettenkomplex Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_n(X,A)} gleich der Faktorgruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_n(X)/C_n(A)} , die Definition der Randabbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d} bleibt. Die Homologie dieses Kettenkomplexes bezeichnet man als die relative Homologiegruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n(X,A)} . Anschaulich gesprochen will man das Innere von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} ignorieren, wie es im nächsten Abschnitt noch in der Ausschneidungseigenschaft präzisiert wird. Es gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n(X,\varnothing) = H_n(X)} .[1]
Jede Abbildung zwischen zwei Raumpaaren induziert auch einen Gruppenhomomorphismus der entsprechenden Homologiegruppen. Sei dazu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon (X,A)\rightarrow (Y,B)} eine stetige Abbildung zwischen zwei Raumpaaren, d. h. eine stetige Abbildung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} , so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(A)\subset B} . Diese Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} definiert eine Kettenabbildung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_n(X,A)} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_n(Y,B)} , indem sie jedem singulären Simplex Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma: \Delta^n\rightarrow X} den singulären Simplex Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\circ\sigma} zuordnet. Dadurch bekommt man eine Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_*\colon H_n(X,A)\rightarrow H_n(Y,B)} . So erhält man, dass jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n} ein kovarianter Funktor von der Kategorie der Raumpaare in die Kategorie der abelschen Gruppen ist.
Eigenschaften
Mit Mitteln der homologischen Algebra kann man zeigen, dass stets eine lange exakte Sequenz von Homologiegruppen existiert:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cdots \rightarrow H_n(A) \rightarrow H_n(X) \rightarrow H_n(X,A) \rightarrow H_{n-1}(A) \rightarrow H_{n-1}(X) \rightarrow H_{n-1}(X,A) \cdots \,}
Die Abbildungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n(A) \rightarrow H_n(X)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n(X) \rightarrow H_n(X,A)} sind dabei von der Inklusion bzw. der Projektion induziert. Die Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n(X,A) \rightarrow H_{n-1}(A)} ist ein über das Schlangenlemma definierter Randoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_n} .[2]
Eine weitere wichtige Eigenschaft von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n} ist seine Homotopieinvarianz. Seien dazu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f,g\colon (X,A) \rightarrow (Y,B)} zwei stetige Abbildungen, die homotop sind. Dann besagt der sogenannte Homotopiesatz[3][4]: Die induzierten Gruppenhomomorphismen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_*,g_*\colon H_n(X,A)\rightarrow H_n(Y,B)} sind identisch. So sind insbesondere die Homologiegruppen von zwei homotopieäquivalenten Räumen isomorph.
Für relative Homologiegruppen gilt die Ausschneidungseigenschaft. Sei hierzu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,A)} ein Raumpaar und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B\subset A} , so dass der Abschluss von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} im Inneren von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} enthalten ist. Dann ist die von der Inklusion induzierte Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n(X - B,A - B)\rightarrow H_n(X,A)} ein Isomorphismus.
Damit sind die sogenannten Eilenberg-Steenrod-Axiome erfüllt und es ist gezeigt, dass die singuläre Homologie eine Homologietheorie ist. Damit gelten für die singuläre Homologie auch alle Eigenschaften, die ganz allgemein für alle Homologietheorien gelten. Das sind insbesondere die Mayer-Vietoris-Sequenz und der Einhängungsisomorphismus, der besagt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_{n+1}(\Sigma X, pt)\cong H_n(X,pt)} . Hierbei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma X} die Einhängung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} .
Für eine n-dimensionale Mannigfaltigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} gilt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_m(M) = 0} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m > n} . Allgemeiner gilt dies auch für einen CW-Komplex, der keine Zellen der Dimension größer als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} hat.
Beispiele und Berechnung
Das einfachste Beispiel ist die Homologie eines Punktes. Es gibt für jeden Simplex Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta^n} nur eine Abbildung in den Raum, womit der Kettenkomplex die folgende Gestalt annimmt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cdots \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0.}
Hierbei sind die Randabbildung immer abwechselnd die 0 und die Identität, so dass der vorletzte Pfeil die Nullabbildung ist. Es gilt somit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n(pt) = 0} für jedes n > 0 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_0(pt) = \mathbb{Z}} . Wegen der Homotopieinvarianz gilt selbiges für jeden zusammenziehbaren Raum.
Im Allgemeinen nützt eine direkte Betrachtung des singulären Kettenkomplexes allerdings wenig, da dieser im Normalfall in jeder positiven Dimension unendlich-dimensional ist. Eine Methode der Berechnung beruht auf den oben erwähnten Eigenschaften der singulären Homologie. So kann man beispielsweise mit Hilfe des Einhängungsisomorphismus und der langen exakten Sequenz des Raumpaares Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (S^n,pt)} berechnen, dass für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \neq 0} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_m(S^n) = \mathbb{Z}} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m = 0} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m = n} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_m(S^0) = \mathbb{Z}^2} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m = 0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_m(S^n) = 0} sonst.
Ein weiteres Beispiel, das man mit Methoden der zellulären Homologie berechnen kann, ist die Homologie des reell projektiven Raums. Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} gerade:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_m(\mathbb{RP}^n) = \begin{cases} \mathbb{Z} & m=0\\ \mathbb{Z}/2\mathbb{Z} & m\equiv 1 \text{ (mod 2) } \text{ und } n > m > 0\\0& m\equiv 0 \text{ (mod 2) } \text{ und } n \geq m > 0 \text{ oder } m>n\end{cases}}
Und für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} ungerade:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_m(\mathbb{RP}^n) = \begin{cases} \mathbb{Z} & m=0 \text{ oder } n\\ \mathbb{Z}/2\mathbb{Z} & m\equiv 1 \text{ (mod 2) } \text{ und } n > m > 0\\0& m\equiv 0 \text{ (mod 2) } \text{ und } n > m > 0 \text{ oder } m > n\end{cases}}
Anwendungen
Eine klassische Anwendung ist der Brouwersche Fixpunktsatz. Dieser besagt, dass jede stetige Abbildung der n-dimensionalen Kugel Dn in sich selbst einen Fixpunkt besitzt. Der Beweis läuft per Widerspruch.
Angenommen, es existierte eine Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon D^n\rightarrow D^n} , die keinen Fixpunkt hat. Dann kann man für jeden Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in D^n} den Strahl von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} zeichnen, der den Rand der Kugel in dem Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x)} trifft (wie im Bild angedeutet). Die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F\colon D^n \rightarrow S^{n-1}} ist stetig und hat die Eigenschaft, dass jeder Punkt auf dem Rand auf sich selbst abgebildet wird. Damit ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F\circ \iota\colon S^{n-1}\rightarrow D^n\rightarrow S^{n-1}}
gleich der Identität, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \iota} die Inklusion des Randes in die Vollkugel ist. Damit ist auch die induzierte Abbildung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (F\circ \iota)_*\colon H_{n-1}(S^{n-1})\rightarrow H_{n-1}(D^n)\rightarrow H_{n-1}(S^{n-1})}
gleich der Identität. Nun ist aber laut des vorherigen Abschnittes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_{n-1}(S^{n-1})\cong \mathbb{Z}} , allerdings Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_{n-1}(D^n) \cong 0} . Damit haben wir den Widerspruch.
Weitere Anwendungen sind der Satz von Borsuk-Ulam und der Jordan-Brouwer-Zerlegungssatz, eine Verallgemeinerung des Jordanschen Kurvensatzes.
Koeffizienten und Bettizahlen
Bei der Konstruktion des singulären Kettenkomplexes wurde die freie abelsche Gruppe, also der freie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{Z}} -Modul, über alle singulären Simplizes gebildet. Die daraus entstehende Homologie bezeichnet man auch als Homologie mit Koeffizienten in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{Z}} . Es ist allerdings auch möglich, eine beliebige andere abelsche Koeffizientengruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} zu wählen. Dies erreicht man, indem man den Kettenkomplex Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C(X,A)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} tensoriert. Die daraus entstehende Homologie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H(X,A;G)} bezeichnet man als die Homologie des Raumpaares Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,A)} mit Koeffizienten in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} .
Die Umrechnung von Homologie mit verschiedenen Koeffizientengruppen ineinander erfolgt üblicherweise mittels universellen Koeffiziententheoremen.
Eine besondere Rolle spielen Körper als Koeffizienten. Hier ist der Kettenkomplex in jeder Dimension ein Vektorraum und somit auch die entstehende Homologie. Auf diese Weise kann man auch die sogenannten Bettizahlen definieren:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_i(X) = \dim_\mathbb{Q}H_i(X;\mathbb{Q})}
Siehe auch
Literatur
Man wird in jedem modernen Lehrbuch der algebraischen Topologie auch eine ausführliche Behandlung der singulären Homologie finden. Das Folgende kann deshalb nur eine kleine Auswahl sein.
- Samuel Eilenberg, Norman Steenrod: Foundations of Algebraic Topology. Princeton University Press, 1964. (erstes modernes Lehrbuch über singuläre Homologie)
- Edwin H. Spanier: Algebraic Topology. Springer, 1998, ISBN 0-387-94426-5. (sehr vollständig)
- Glen E. Bredon: Topology and Geometry. Springer, 1997, ISBN 0-387-97926-3. (viele Anwendungen)
- Allen Hatcher: Algebraic Topology. Cambridge University Press, 2002.
- Wolfgang Lück: Algebraische Topologie. Homologie und Mannigfaltigkeiten. Vieweg, 2005, ISBN 3-528-03218-9. (behandelt auch Differentialformen)
- Nigel Ray, Grant Walker: Adams Memorial Symposium on Algebraic Topology. Cambridge University Press, 1992, ISBN 0-521-42074-1.
- Egbert Harzheim: Einführung in die Kombinatorische Topologie (= DIE MATHEMATIK. Einführungen in Gegenstand und Ergebnisse ihrer Teilgebiete und Nachbarwissenschaften). Wissenschaftliche Buchgesellschaft, Darmstadt 1978, ISBN 3-534-07016-X.
- Ralph Stöcker, Heiner Zieschang: Algebraische Topologie (= Mathematische Leitfäden). 2., überarbeitete und erweiterte Auflage. Teubner Verlag, Stuttgart 1994, ISBN 3-519-12226-X.
Einzelnachweise
- ↑ Allen Hatcher: Algebraic Topology. University Press, Cambridge 2000, ISBN 0-521-79540-0, S. 115 (Online).
- ↑ Allen Hatcher: Algebraic Topology. University Press, Cambridge 2000, ISBN 0-521-79540-0, S. 117 (Online).
- ↑ E. Harzheim: Einführung in die Kombinatorische Topologie. 1978, S. 283 ff.
- ↑ R. Stöcker, H. Zieschang: Algebraische Topologie. 1994, S. 223 ff.