Komplexe Zahl
Die komplexen Zahlen stellen eine Erweiterung der reellen Zahlen dar. Ziel der Erweiterung ist es, algebraische Gleichungen wie bzw. lösbar zu machen. Im Gegensatz zu den Erweiterungen reicht es hier nicht mehr aus, die Zahlen „linksseitig“ zu erweitern (ganze Zahlen) oder „dichter zu stopfen“ (rationale und reelle Zahlen), sondern man wechselt von einer Zahlengeraden zu einer Zahlenebene.
Da die Quadrate aller reellen Zahlen größer oder gleich 0 sind, kann die Lösung der Gleichung keine reelle Zahl sein. Man braucht eine ganz neue Zahl, die man üblicherweise nennt, mit der Eigenschaft . Diese Zahl wird als imaginäre Einheit bezeichnet.
Komplexe Zahlen werden nun als Summe definiert, wobei und reelle Zahlen sind und die oben definierte imaginäre Einheit ist.
Auf die so definierten komplexen Zahlen lassen sich die üblichen Rechenregeln für reelle Zahlen anwenden, wobei wie eine Konstante verwendet wird und durch ersetzt werden kann und umgekehrt. Für die Menge der komplexen Zahlen wird das Symbol (ℂ als Unicode-Zeichen U+2102
, siehe Buchstaben mit Doppelstrich) verwendet.
Der so konstruierte Zahlenbereich der komplexen Zahlen bildet einen Erweiterungskörper der reellen Zahlen und hat eine Reihe vorteilhafter Eigenschaften, die sich in vielen Bereichen der Natur- und Ingenieurwissenschaften als äußerst nützlich erwiesen haben. Einer der Gründe für diese positiven Eigenschaften ist die algebraische Abgeschlossenheit der komplexen Zahlen. Dies bedeutet, dass jede algebraische Gleichung positiven Grades über den komplexen Zahlen eine Lösung besitzt, was für reelle Zahlen nicht gilt. Diese Eigenschaft ist der Inhalt des Fundamentalsatzes der Algebra. Ein weiterer Grund ist ein Zusammenhang zwischen trigonometrischen Funktionen und der Exponentialfunktion (Eulerformel), der über die komplexen Zahlen hergestellt werden kann. Ferner ist jede auf einer offenen Menge einmal komplex differenzierbare Funktion dort auch beliebig oft differenzierbar – anders als in der Analysis der reellen Zahlen. Die Eigenschaften von Funktionen mit komplexen Argumenten sind Gegenstand der Funktionentheorie, auch komplexe Analysis genannt.
In der Elektrotechnik wird stattdessen der Buchstabe verwendet, um einer Verwechslung mit einer (durch oder bezeichneten) von der Zeit abhängigen Stromstärke vorzubeugen, allerdings erhöht dies die Verwechslungsgefahr mit der Stromdichte in der Elektrodynamik.
Definition
Die komplexen Zahlen lassen sich als Zahlbereich im Sinne einer Menge von Zahlen, für die die Grundrechenarten Addition, Multiplikation, Subtraktion und Division erklärt sind, mit den folgenden Eigenschaften definieren:
- Die reellen Zahlen sind in den komplexen Zahlen enthalten. Das heißt, dass jede reelle Zahl eine komplexe Zahl ist.
- Das Assoziativgesetz und das Kommutativgesetz gelten für die Addition und die Multiplikation komplexer Zahlen.
- Das Distributivgesetz gilt.
- Für jede komplexe Zahl existiert eine komplexe Zahl , sodass .
- Für jede von Null verschiedene komplexe Zahl existiert eine komplexe Zahl , sodass .
- Es existiert eine komplexe Zahl mit der Eigenschaft . Deswegen gilt .
- Unter allen Zahlbereichen mit den zuvor genannten Eigenschaften sind die komplexen Zahlen minimal.
Die letzte Forderung ist gleichbedeutend damit, dass sich jede komplexe Zahl in der Form (bzw. in verkürzter Notation oder auch ) mit reellen Zahlen und darstellen lässt. Die imaginäre Einheit ist dabei keine reelle Zahl. Die Existenz eines solchen Zahlbereichs wird im Abschnitt zur Konstruktion der komplexen Zahlen nachgewiesen.
Unter Verwendung der Begriffe Körper und Isomorphie lässt sich das so formulieren: Es gibt minimale Körper, die den Körper der reellen Zahlen und ein Element mit der Eigenschaft enthalten. In einem solchen Körper hat jedes Element eine und nur eine Darstellung als mit reellen Die komplexen Zahlen sind isomorph zu jedem solchen Körper.
Die Koeffizienten werden als Real- bzw. Imaginärteil von bezeichnet. Dafür haben sich zwei typografische Schreibweisen etabliert:
- und (Schreibweise der Operatoren ohne besondere Ausschreibung)
- und (Schreibweise der Operatoren in Frakturschrift)
Darstellung von komplexen Zahlen in der komplexen Zahlenebene
Während sich die Menge der reellen Zahlen als Punkte auf einer Zahlengeraden darstellen lässt, lässt sich die Menge der komplexen Zahlen als Punkte auf einer Ebene (komplexe Ebene, gaußsche Zahlenebene) darstellen. Dies entspricht der „doppelten Natur“ von als eindimensionalem komplexem und als zweidimensionalem reellem Vektorraum. Die Teilmenge der reellen Zahlen bildet darin die waagerechte Achse, die Teilmenge der rein imaginären Zahlen (d. h. mit Realteil 0) bildet die senkrechte Achse. Eine komplexe Zahl mit besitzt dann die horizontale Koordinate und die vertikale Koordinate , wird also mit dem Zahlenpaar identifiziert.
Gemäß Definition entspricht die Addition komplexer Zahlen einer Vektoraddition, wobei man die Punkte in der Zahlenebene mit ihren Ortsvektoren identifiziert. Die Subtraktion komplexer Zahlen entspricht einer Vektorsubtraktion. Die Multiplikation ist in der gaußschen Ebene eine Drehstreckung, was nach Einführung der Polarform weiter unten offensichtlicher werden wird.
Es gibt zwei Möglichkeiten der Darstellung von komplexen Zahlen:
- Darstellung in kartesischen Koordinaten bzw. in algebraischer Form als Summe des reellen und des rein imaginären Anteils mit folgenden Schreibweisen:
- und
- .
- Darstellung in Polarkoordinaten bzw. in Polardarstellung als Produkt des absoluten Betrages gedreht um den Winkel mit folgenden Schreibweisen:
- ,
- ,
- ,
- ,
- und
- Alle Schreibweisen stellen exakt den gleichen Sachverhalt dar. Hinzu kommen die Schreibweisen mit expliziter Schreibweise der Multiplikation und und das Nutzen von Kommutativität, Assoziativität und Distributivität, so z. B.
. Beide Darstellungen lassen sich ineinander umrechnen und haben jeweils Vor- und Nachteile. Man sehe sich dazu die Abschnitte Rechnen in der algebraischen Form und Rechnen in der Polarform an.
Operation | Argument in Darstellung | beachte | |
---|---|---|---|
kartesisch | polar | ||
Addition, Subtraktion | ja | nein | erfordert immer Rückrechnung in kartesische Darstellung |
Multiplikation, Division | ja | ja | einfacher in Polardarstellung |
ganzzahlige Potenzen | ja | ja | einfacher in Polardarstellung |
Quadratwurzel, 2n-te Wurzeln |
ja | ja | einfacher in Polardarstellung |
beliebige Potenzen und Wurzeln |
Exponent | Basis | Basis in Polardarstellung, Exponent reell oder in kartesische Darstellung |
Gleichheit | ja | ja | Mehrdeutigkeit in Polardarstellung berücksichtigen |
Logarithmus | nein | ja | Ergebnis liegt in kartesischer Darstellung vor. |
Exponentialfunktion | ja | nein | Ergebnis liegt in Polardarstellung vor. |
Trigonometrische/ Hyperbelfunktionen |
ja | nein |
Notation in der algebraischen Form
Die Notation in der Form wird auch als (nach René Descartes benannte) kartesische oder algebraische Form bezeichnet. Die Bezeichnung kartesisch erklärt sich aus der Darstellung in der komplexen bzw. gaußschen Zahlenebene (siehe weiter unten). Es findet sich auch die Darstellung ;[1] in der Norm DIN 1302:1999 Allgemeine mathematische Zeichen und Begriffe kommt sie allerdings nicht vor.
In der Elektrotechnik wird das kleine i schon für zeitlich veränderliche Ströme verwendet (siehe Wechselstrom) und kann zu Verwechslungen mit der imaginären Einheit führen. Daher wird in der Elektrotechnik üblicherweise für die imaginäre Einheit die Bezeichnung gewählt, wie dies auch in der Norm DIN 1302 festgelegt ist.
In der Physik wird zwischen für die Stromstärke bei Wechselstrom und durch die Art der Darstellung des Buchstabens für die imaginäre Einheit unterschieden. Dies führt durch die Trennung beim aufmerksamen Leser nicht zu Verwechslungen und wird in dieser Form weitgehend sowohl in der physikalisch-experimentellen als auch in der physikalisch-theoretischen Literatur angewandt; handschriftlich ist diese Feinheit allerdings nicht zu halten, weshalb häufig das als Symbol für die imaginäre Einheit verwendet wird. Siehe auch: Komplexe Wechselstromrechnung
Komplexe Zahlen können gemäß DIN 1304-1 und DIN 5483-3 unterstrichen dargestellt werden, um sie von reellen Zahlen zu unterscheiden. Siehe auch: Phasor.
Rechnen in der algebraischen Form
Die im Folgenden verwendeten komplexen Zahlen und sind definiert durch:
- mit und
- mit .
In Rechnungen, die nur einen komplexen Operanden erfordern, wird verwendet:
- mit .
Für reelle Zahlen wird ( ist Element der reellen Zahlen) und für ganze Zahlen wird ( ist Element der ganzen Zahlen) verwendet.
Addition
Für die Addition zweier komplexer Zahlen und gilt
- .
Subtraktion
Für die Subtraktion zweier komplexer Zahlen und gilt
- .
Multiplikation
Für die Multiplikation einer komplexen Zahl und einer reellen Zahl gilt
- .
Für die Multiplikation zweier komplexer Zahlen und gilt
- .
Komplexe Konjugation
Die konjugiert Komplexe einer komplexen Zahl ist definiert durch
Das Produkt einer komplexen Zahl mit ihrer konjugiert Komplexen ergibt eine reelle Zahl
was für die Division nützlich ist.
Division
Für die Division einer komplexen Zahl durch eine reelle Zahl gilt
- .
Für die Division der komplexen Zahl durch die komplexe Zahl mit erweitert man den Bruch mit der zum Nenner konjugiert komplexen Zahl . Der Nenner wird dadurch reell (und ist das Quadrat des Betrages von ) und die Division lässt sich auf den vorherigen Fall zurückführen:
- .
Potenzieren mit ganzen Zahlen
Das Potenzieren einer komplexen Zahl mit einer positiven ganzen Zahl geschieht durch mehrfache Multiplikation:
- .
oder direkt berechnet
- .
Die geraden liefern hierbei die reellen Anteile mit alternierendem Vorzeichen , die ungeraden die imaginären Anteile mit alternierendem Vorzeichen .
Für und gilt:
- .
Für und gilt:
- .
Quadratwurzel und 2n-te Wurzeln
Auch das Ziehen der Quadratwurzel ist in algebraischer Form möglich. Man nutzt die Lineal-und-Zirkel-Methode zur Winkelhalbierung und skaliert dann die Länge auf .
Für komplexe Zahlen gilt
- mit
Für nichtnegative reelle Zahlen folgt daraus die einfachere Formel , für negative reelle Zahlen und für rein imaginäre Zahlen .
Für die 2n-te Wurzel ist diese Operation n Mal auszuführen.
Andere Wurzeln sind in der algebraischen Form nicht möglich, da eine beliebige Teilung eines Winkels nur für Zweierpotenzen 2n möglich ist. Würde es ein Verfahren geben, könnte man damit Winkel teilen, was ein Widerspruch darstellt.
Logarithmus
Die Berechnung des natürlichen Logarithmus ist in algebraischer Form nicht direkt möglich. Es ist vorher eine Umrechnung in die Polarform notwendig (siehe oben).
Exponentialfunktion
Die Exponentialfunktion lässt sich berechnen durch:
Das Ergebnis liegt dann in der Polarform vor.
In algebraischer Form lautet das Ergebnis:
des Ergebnisses berechnet sich zu: .
des Ergebnisses berechnet sich zu: .
Winkelfunktionen
Die Winkelfunktionen lassen sich auf Grundlage der Additionstheoreme und der Relationen zwischen Winkelfunktionen und der Hyperbelfunktionen herleiten.
- Sinus[2]
- Kosinus[2]
- Tangens[3]
- Kotangens[3]
- Hyperbelsinus[4]
- Hyperbelkosinus[4]
- Hyperbeltangens[5]
- Hyperbelcotangens[6]
Ordnungsrelation
Anders als der Körper der reellen Zahlen kann der Körper der komplexen Zahlen nicht mit einer strengen totalen Ordnungsrelation, die mit den arithmetischen Operationen verträglich ist, versehen werden.[Anm 1]
Gleichheit
Zwei komplexe Zahlen sind genau dann gleich, wenn jeweils die Realteile und die Imaginärteile gleich sind:
genau dann, wenn und
Betrag
Der (absolute) Betrag einer komplexen Zahl ist die Länge ihres Vektors in der Gaußschen Zahlenebene und berechnet sich zu
- oder äquivalent
- (siehe konjugiert Komplexe).
Der Betrag ist eine nichtnegative reelle Zahl. Es gibt genau eine komplexe Zahl, deren Betrag 0 ist, die Zahl .
Argument
Das Argument einer komplexen Zahl ist der Winkel zwischen der reellen positiven Achse und dem Vektor der Zahl in der Gaußschen Zahlenebene entgegen dem Uhrzeigersinn. Es berechnet sich zu
- (siehe arctan2).
Abstand
Die Abstand zwischen zwei komplexen Zahlen ist definiert durch
- .
Dieser ist genau dann 0, wenn ist. Siehe auch Metrik.
Rechenbeispiele
Addition:
Subtraktion:
Multiplikation:
Division:
Potenz mit ganzer Zahl:
oder
Quadratwurzel:
Betrag:
Abstand:
Notation in Polarform
Neben der Notation von komplexen Zahlen als Summe eines reellen und eines imaginären Anteils (kartesische oder algebraische Notation) kann man komplexe Zahlen auch durch deren Länge (absoluter Betrag ) und deren Winkel (Argument ) beschreiben. Dafür gibt es unterschiedliche (den Laien verwirrende) Schreibweisen, die aber genau den gleichen Sachverhalt beschreiben und teilweise die Rückrechnung in die algebraische Form vorwegnehmen.
Trigonometrische
Formund tauchen je zweimal in der Formel auf;
nimmt Rückrechnung vorweg: ,übliche trigonometrische Form; taucht zweimal in der Formel auf;
gemeinsamer Faktor ausgeklammertÜbergang Kurzschreibweise mit Funktion ;
da , stellt dies tw. schon die Exponentialschreibweise dar.Exponential-Form,
Eulersche RelationExponentialschreibweise mit -Schreibweise Exponentialschreibweise mit -Schreibweise Schreibweise mit der Funktion Exponentialschreibweise mit Basis Versordarstellung geometrische Notation, entgegen dem Uhrzeigersinn um rotiert algebraisch
Die trigonometrische Darstellung ist dabei eine geometrisch verständlichere Darstellung, die Exponentialform nutzt die Identitäten
- ,
auch bekannt als eulerschen Relation.[7]
Die formale Umrechnung erfolgt durch die Operatoren (Berechnungen)
- und
bzw.
- und
- .
Zu deren genauer Ausführung siehe Umrechnung zwischen algebraischer und Polarform.
Nichteindeutigkeit der Polarform
Die Darstellung in Polarform ist nicht mehr eindeutig. So stellt die Zahl dieselbe Zahl wie dar, nämlich die Zahl . Die Ursache liegt in der Periodizität der Winkelfunktionen (und von ):
- Für ein beliebiges gilt
- und
- ,
- daraus folgt auch
- bzw. in Eulerscher Schreibweise:
- ,
- was zur Folge hat, dass die Darstellung im Polardarstellung nicht mehr eindeutig ist.
Das Argument ist nicht eindeutig, üblich ist die Begrenzung auf , möglich ist aber auch .
Für die Zahl ist das Argument undefiniert. Jede Zahl mit dem absoluten Betrag stellt die Zahl dar.
Umrechnung zwischen algebraischer und Polarform
Notation:
- : Realteil einer komplexen Zahl
- : Imaginärteil einer komplexen Zahl
- : absoluter Betrag einer komplexen Zahl
- : Argument einer komplexen Zahl
Umrechnung von der Polarform in die algebraische Form
Die Umrechnung der Polarform in die algebraische Form erfolgt unkompliziert durch:
Umrechnung von der algebraischen Form in die Polarform
Für in algebraischer Form ist
Für ist das Argument beliebig, wird aber häufig auf 0 gesetzt oder undefiniert gelassen. Für kann das Argument im Intervall mit Hilfe einer trigonometrischen Umkehrfunktion, bspw. mit Hilfe des Arkuskosinus über
ermittelt werden. Verfahren, die den Arkustangens verwenden, sind im Artikel Arkustangens und Arkuskotangens § Umrechnung ebener kartesischer Koordinaten in polare aufgeführt. Dazu gehört auch die in vielen Programmiersprachen und Tabellenkalkulationen zur Verfügung gestellte, häufig mit dem Namen arctan2 oder auch atan2 bezeichnete Variante der Arkustangensfunktion, die beide Werte übergeben bekommt und das Ergebnis je nach Vorzeichen von und dem passenden Quadranten zuordnet.
Die Berechnung des Winkels im Intervall kann im Prinzip so durchgeführt werden, dass der Winkel zunächst wie vorstehend beschrieben im Intervall berechnet wird und dann um vergrößert wird, falls er negativ ist:
(siehe Polarkoordinaten).
Rechnen in der Polarform
Die im Folgenden verwendeten komplexen Zahlen und sind definiert durch:
- mit und
- mit .
In Rechnungen, die nur einen komplexen Operanden erfordern, wird verwendet:
- mit .
Für reelle Zahlen wird und für ganze Zahlen wird verwendet.
Es wird einheitlich die Schreibweise verwendet, die anderen Schreibweisen stellen den gleichen Sachverhalt dar.
Zu beachten:
- Manche Operationen liefern neben dem Hauptwert mehrdeutige Ergebnisse.
Addition und Subtraktion
Addition und Subtraktion sind in Polardarstellung nicht direkt möglich. Es ist vorher eine Umrechnung in die algebraische Form und ggf. danach eine Rückrechnung in die Polarform notwendig.
Führt man dies durch, erhält man
mit
- und
- unter Nutzung der arctan2-Funktion.
Multiplikation
Für die Multiplikation einer komplexen Zahl und einer reellen Zahl gilt
- .
Für die Multiplikation zweier komplexer Zahlen und gilt
- .
Komplexe Konjugation
Die konjugiert Komplexe einer komplexen Zahl ist gegeben durch
- .
Das Produkt einer komplexen Zahl mit ihrer konjugiert Komplexen ergibt immer eine positive reelle Zahl oder null:
- .
Da äquivalent mit ist, ist eine positive reelle Zahl, wenn .
Division
Für die Division einer komplexen Zahl durch eine reelle Zahl gilt
- .
Für die Division einer reellen Zahl durch eine komplexe Zahl gilt
- .
Für die Division einer komplexen Zahl durch eine komplexe Zahl gilt
- .
Potenzieren
Für das Potenzieren einer komplexen Zahl mit einer reellen Zahl gilt
- .
Für das Potenzieren einer komplexen Zahl mit einer komplexen Zahl ist zuerst in die algebraische Form umzuwandeln, während in der Polarform zu belassen ist
- .
Radizieren
Für das Radizieren einer komplexen Zahl mit einer reellen Zahl gilt
- .
Für das Radizieren einer komplexen Zahl mit einer komplexen Zahl ist von das Reziproke zu berechnen und in die algebraische Form umzuwandeln, während in der Polarform zu belassen ist
- .
Logarithmus
Der natürliche Logarithmus berechnet sich zu
- .
Das Ergebnis liegt in algebraischer Form vor:
des Ergebnisses berechnet sich zu: .
des Ergebnisses berechnet sich zu: .
Der allgemeine Logarithmus berechnet sich zu
- .
Exponentialfunktion
Exponentialfunktionen sind in Polardarstellung nicht direkt möglich. Es ist vorher eine Umrechnung in die algebraische Form notwendig:
Die Berechnung erfolgt dann durch:
- .
des Ergebnisses berechnet sich zu: .
des Ergebnisses berechnet sich zu: .
Winkelfunktionen
Winkelfunktionen sind in Polardarstellung nicht direkt möglich. Es ist vorher eine Umrechnung in die algebraische Form und ggf. danach eine Rückrechnung in die Polarform notwendig (siehe oben).
Ordnungsrelation
Anders als der Körper der reellen Zahlen kann der Körper der komplexen Zahlen nicht mit einer strengen totalen Ordnungsrelation, die mit den arithmetischen Operationen verträglich ist, versehen werden.[Anm 2]
Gleichheit
Zwei komplexe Zahlen und sind genau dann gleich, wenn der absolute Betrag gleich ist und das Argument gleich ist oder sich nur um ein ganzzahliges Vielfaches von unterscheidet. Ist der Betrag , handelt es sich um die Zahl und das Argument spielt dann keine Rolle mehr.
Abstand
Die Berechnung des Abstands ist in Polardarstellung nicht direkt möglich. Es ist vorher eine Umrechnung in die algebraische Form notwendig.
Mehrdeutigkeit
Potenz- und Wurzelfunktion
Die Potenz- und Wurzelfunktion haben neben dem Hauptwert weitere mehrdeutige Lösungen.
Die Mehrdeutigkeit hängt von der Zugehörigkeit von bzw. zu Zahlenmengen ab:
Für
- : eindeutige Lösung
- : , teilerfremd: Lösungen
- : abzählbar viele Lösungen
Für
- : eindeutige Lösung
- : , teilerfremd: Lösungen
- : abzählbar viele Lösungen
Rechenoperationen 3. Stufe
Zu den Rechenoperationen der dritten Stufe gehören Potenzieren, Wurzelziehen (Radizieren) und Logarithmieren.
Potenzen
Natürliche Exponenten
Für natürliche Zahlen berechnet sich die -te Potenz in der polaren Form zu
(siehe den Satz von de Moivre) oder für die algebraische Form mit Hilfe des binomischen Satzes zu
Beliebige komplexe Exponenten
Die allgemeine Definition einer Potenz mit komplexer Basis und komplexem Exponenten lautet
wobei für den Hauptwert des komplexen Logarithmus steht (siehe unten), damit liefert die Formel ebenfalls einen Hauptwert. Im Fall allerdings stimmen alle in Frage kommenden Ergebnisse mit diesem Hauptwert überein und die Funktion wird eindeutig.
Logarithmen
Der komplexe natürliche Logarithmus ist (anders als der reelle auf ) nicht eindeutig. Eine komplexe Zahl heißt Logarithmus der komplexen Zahl , wenn
Mit ist auch jede Zahl mit beliebigem ein Logarithmus von . Man arbeitet daher mit Hauptwerten, d. h. mit Werten eines bestimmten Streifens der komplexen Ebene.
Der Hauptwert des natürlichen Logarithmus der komplexen Zahl
ist
mit und . Anders formuliert: Der Hauptwert des natürlichen Logarithmus der komplexen Zahl ist
wobei der Hauptwert des Arguments von ist.
Naheliegenderweise gelten die Logarithmengesetze für den Hauptwert des natürlichen Logarithmus nur modulo .
Orthogonale Zerlegung
Die komplexe Zahl lässt sich zur Richtung gemäß
orthogonal zerlegen. Dabei bedeuten
und
- .
Untergruppen
Genau die Zahlen bilden den Einheitskreis der komplexen Zahlen mit dem Betrag , diese Zahlen werden auch unimodular genannt und bilden die Kreisgruppe.
Dass die Multiplikation von komplexen Zahlen (außer der Null) Drehstreckungen entspricht, lässt sich mathematisch wie folgt ausdrücken: Die multiplikative Gruppe der komplexen Zahlen ohne die Null lässt sich als direktes Produkt der Gruppe der Drehungen – isomorph zur Kreisgruppe – und der Streckungen um einen Faktor ungleich Null – isomorph zur multiplikativen Gruppe – auffassen. Erstere Gruppe lässt sich durch das Argument parametrisieren, zweitere entspricht gerade den Beträgen.
Alle Elemente einer endlichen Untergruppe der multiplikativen Einheitengruppe sind Einheitswurzeln. Unter allen Ordnungen von Elementen einer gegebenen endlichen Untergruppe gibt es eine maximale, sie heiße . Da kommutativ ist, erzeugt ein Element mit dieser maximalen Ordnung dann auch die Gruppe, so dass die Gruppe zyklisch ist und genau aus den Elementen
- mit
besteht. Alle diese Elemente liegen auf dem Einheitskreis.
Die Vereinigung aller endlichen Untergruppen ist eine Gruppe, die zur Torsionsgruppe isomorph ist. Sie liegt dicht in ihrer Vervollständigung, der schon erwähnten Kreisgruppe, die auch als 1-Sphäre aufgefasst werden kann und zu isomorph ist.
Pragmatische Rechenregeln
Am einfachsten lassen sich die Berechnungen folgendermaßen durchführen:
- Addition und Subtraktion komplexer Zahlen werden (in der algebraischen Form) komponentenweise durchgeführt.
- Die Multiplikation komplexer Zahlen kann je nach Vorgabe vorteilhaft in algebraischer Form oder in Exponentialform (Multiplikation der Beträge und Addition der Argumente (Winkel)) durchgeführt werden.
- Bei der Division komplexer Zahlen werden in Exponentialform ihre Beträge dividiert und ihre Argumente (Winkel) subtrahiert, oder in algebraischer Form der Quotient mit dem konjugierten Nenner erweitert.
- Beim Potenzieren einer komplexen Zahl mit einem reellen Exponenten wird ihr Betrag potenziert und ihr Argument (Winkel) mit dem Exponenten multipliziert; die Benutzung der algebraischen Form (mit Newtons Binomialsatz) ist in den meisten Fällen umständlicher (insbesondere für höhere Potenzen).
- Beim Radizieren (Wurzelziehen) einer komplexen Zahl mit einem reellen Exponenten wird ihr Betrag radiziert und ihr Argument (Winkel) durch den Exponenten dividiert. Hierdurch entsteht die erste Lösung. Bei einer -ten Wurzel entstehen Lösungen, die im Winkel von um den Ursprung der gaußschen Ebene verteilt sind. Siehe Wurzel (Mathematik). Eine Quadratwurzel kann auch recht einfach in kartesischer Form berechnet werden.
- Beim Multiplizieren in algebraischer Form lässt sich durch folgendes Verfahren eine der vier Multiplikation einsparen. Allerdings sind drei zusätzliche Additionen bzw. Subtraktionen notwendig und die Berechnung lässt sich schlechter parallelisieren.
Konstruktion der komplexen Zahlen
In diesem Abschnitt wird nachgewiesen, dass tatsächlich ein Körper der komplexen Zahlen existiert, der den in der obigen Definition geforderten Eigenschaften genügt. Es sind dabei verschiedene Konstruktionen möglich, die jedoch bis auf Isomorphie zum selben Körper führen.
Komplexe Konjugation
Ändert man das Vorzeichen des Imaginärteils einer komplexen Zahl so erhält man die zu konjugiert komplexe Zahl (manchmal auch geschrieben).
Die Konjugation ist ein (involutorischer) Körperautomorphismus, da sie mit Addition und Multiplikation verträglich ist, d. h., für alle gilt
In der Polardarstellung hat die konjugiert komplexe Zahl bei unverändertem Betrag gerade den negativen Winkel von Man kann die Konjugation in der komplexen Zahlenebene also als die Spiegelung an der reellen Achse interpretieren. Insbesondere werden unter der Konjugation genau die reellen Zahlen auf sich selbst abgebildet.
Das Produkt aus einer komplexen Zahl und ihrer komplex Konjugierten ergibt das Quadrat ihres Betrages:
Die komplexen Zahlen bilden damit ein triviales Beispiel einer C*-Algebra.
Die Summe aus einer komplexen Zahl und ihrer komplex Konjugierten ergibt das 2-Fache ihres Realteils:
Die Differenz aus einer komplexen Zahl und ihrer komplex Konjugierten ergibt das -Fache ihres Imaginärteils:
Paare reeller Zahlen
Die Konstruktion nimmt zunächst keinerlei Bezug auf die imaginäre Einheit : Im 2-dimensionalen reellen Vektorraum der geordneten reellen Zahlenpaare wird neben der Addition
(das ist die gewöhnliche Vektoraddition) eine Multiplikation durch
definiert.
Nach dieser Festlegung schreibt man , und wird zu einem Körper, dem Körper der komplexen Zahlen. Die imaginäre Einheit wird dann durch definiert.
Da eine Basis des bilden, lässt sich damit als Linearkombination
darstellen.
Erste Eigenschaften
- Die Abbildung ist eine Körpereinbettung von in , aufgrund derer wir die reelle Zahl mit der komplexen Zahl identifizieren.
Bezüglich der Addition ist:
- die Zahl das neutrale Element (das Nullelement) in und
- die Zahl das inverse Element in .
Bezüglich der Multiplikation ist:
- die Zahl das neutrale Element (das Einselement) von und
- das Inverse (Reziproke) zu ist .
Bezug zur Darstellung in der Form a + bi
Durch wird die imaginäre Einheit festgelegt; für diese gilt , was nach obiger Einbettung gleich entspricht.
Jede komplexe Zahl besitzt die eindeutige Darstellung der Form
mit ; dies ist die übliche Schreibweise für die komplexen Zahlen.
Polynome: Adjunktion
Eine weitere Konstruktion der komplexen Zahlen ist der Faktorring
des Polynomringes in einer Unbestimmten über den reellen Zahlen. Die Zahl entspricht dabei dem Bild der Unbestimmten , die reellen Zahlen werden mit den konstanten Polynomen identifiziert.
Dieses Konstruktionsprinzip ist auch in anderem Kontext anwendbar, man spricht von Adjunktion.
Matrizen
Die Menge der -Matrizen der Form
- mit
bildet ebenfalls ein Modell der komplexen Zahlen. Dabei werden die reelle Einheit bzw. die imaginäre Einheit durch die Einheitsmatrix bzw. die Matrix dargestellt. Daher gilt:
Diese Menge ist ein Unterraum des Vektorraums der reellen -Matrizen.
Reelle Zahlen entsprechen Diagonalmatrizen
Die zu den Matrizen gehörenden linearen Abbildungen sind, sofern und nicht beide null sind, Drehstreckungen im Raum . Es handelt sich um genau dieselben Drehstreckungen wie bei der Interpretation der Multiplikation mit einer komplexen Zahl in der gaußschen Zahlenebene.
Weitere Eigenschaften
- Der Körper der komplexen Zahlen ist einerseits ein Oberkörper von , andererseits ein zweidimensionaler -Vektorraum. Der Isomorphismus wird auch als natürliche Identifikation bezeichnet. In der Regel nutzt man dies auch, um formell als mit der entsprechenden komplexen Multiplikation zu definieren und dann zu setzen. Dabei wird gleichzeitig festgelegt:
- Die Drehung der komplexen Ebene am Ursprung um den positiven Winkel führt die positive reelle in die positiv-imaginäre Einheit über.
- Wenn die positiv-reelle Halbachse in der komplexen Ebene nach rechts geht, dann legt man die positiv-imaginäre Halbachse nach oben. Das ist in Einklang mit dem mathematisch positiven Drehsinn.
- Die Körpererweiterung ist vom Grad ; genauer ist isomorph zum Faktorring , wobei das Minimalpolynom von über ist. Ferner bildet bereits den algebraischen Abschluss von .
- Als -Vektorraum besitzt die Basis . Daneben ist wie jeder Körper auch ein Vektorraum über sich selbst, also ein eindimensionaler -Vektorraum mit Basis .
- und sind genau die Lösungen der quadratischen Gleichung . In diesem Sinne kann (aber auch ) als „Wurzel aus “ aufgefasst werden.[Anm 3]
- ist im Gegensatz zu kein geordneter Körper, d. h., es gibt keine mit der Körperstruktur verträgliche lineare Ordnungsrelation auf . Von zwei unterschiedlichen komplexen Zahlen kann man daher nicht sinnvoll (bezogen auf die Addition und Multiplikation in ) festlegen, welche von beiden die größere bzw. die kleinere Zahl ist.
Metrik
Die durch die Abstandsfunktion induzierte Metrik versieht den komplexen Vektorraum mit seiner Standardtopologie. Sie stimmt mit der Produkttopologie von überein, so wie auch die Einschränkung von auf mit der Standardmetrik auf übereinstimmt.
Beide Räume, sowie , sind vollständig unter diesen Metriken. Auf beiden Räumen lässt sich der topologische Begriff der Stetigkeit zu analytischen Begriffen wie Differentiation und Integration erweitern.
Geschichte
Der Begriff „komplexe Zahlen“ wurde von Carl Friedrich Gauß (Theoria residuorum biquadraticorum, 1831) eingeführt, der Ursprung der Theorie der komplexen Zahlen geht auf die Mathematiker Gerolamo Cardano (Ars magna, Nürnberg 1545) und Rafael Bombelli (L’Algebra, Bologna 1572; wahrscheinlich zwischen 1557 und 1560 geschrieben) zurück.[8]
Die Unmöglichkeit eines naiven Radizierens der Art ist bei der Behandlung quadratischer Gleichungen schon sehr früh bemerkt und hervorgehoben worden, z. B. schon in der um 820 n. Chr. verfassten Algebra des Muhammed ibn Mûsâ Alchwârizmî. Aber bei dem nächstliegenden und unanfechtbaren Schluss, dass diese Art von Gleichung nicht lösbar sei, blieb die mathematische Forschung nicht stehen.
In gewissem Sinne ist bereits Gerolamo Cardano (1501–1576) in seinem 1545 erschienenen Buch Artis magnae sive de regulis algebraicis liber unus darüber hinausgegangen. Er behandelt dort die Aufgabe, zwei Zahlen zu finden, deren Produkt 40 und deren Summe 10 ist. Er hebt hervor, dass die dafür anzusetzende Gleichung
keine Lösung hat, fügt aber einige Bemerkungen hinzu, indem er in die Lösung
der allgemeinen normierten quadratischen Gleichung
für und die Werte −10 bzw. 40 einsetzt. Wenn es also möglich wäre, dem sich ergebenden Ausdruck
einen Sinn zu geben, und zwar so, dass man mit diesem Zeichen nach denselben Regeln rechnen dürfte wie mit einer reellen Zahl, so würden die Ausdrücke
in der Tat je eine Lösung darstellen.
Für die Quadratwurzel aus negativen Zahlen und allgemeiner für alle aus einer beliebigen reellen Zahl und einer positiven reellen Zahl zusammengesetzten Zahlen
- oder
hat sich seit der Mitte des 17. Jahrhunderts die Bezeichnung imaginäre Zahl eingebürgert, die ursprünglich von René Descartes stammt, der in seiner La Géométrie (1637) damit die Schwierigkeit des Verständnisses komplexer Zahlen als nichtreeller Lösungen algebraischer Gleichungen ausdrückte. John Wallis erzielte im 17. Jahrhundert erste Fortschritte in Hinblick auf eine geometrische Interpretation komplexer Zahlen. Gottfried Wilhelm Leibniz nannte sie 1702 eine feine und wunderbare Zuflucht des menschlichen Geistes, beinahe ein Zwitterwesen zwischen Sein und Nichtsein.[9] Die Einführung der imaginären Einheit als neue Zahl wird Leonhard Euler zugeschrieben. Er erzielte durch Rechnen mit imaginären Zahlen wertvolle neue Erkenntnisse, zum Beispiel veröffentlichte er die Eulersche Formel 1748 in seiner Einführung in die Analysis und veröffentlichte erstmals explizit die Formel von Abraham de Moivre (Ende des 17. Jahrhunderts, dieser wiederum hatte sie von Isaac Newton[10]), aber auch Euler hatte noch große Schwierigkeiten beim Verständnis und der Einordnung komplexer Zahlen, obwohl er routinemäßig damit rechnete.
Die geometrische Interpretation wurde zuerst vom Landvermesser Caspar Wessel (1799 veröffentlicht in den Abhandlungen der Königlich Dänischen Akademie der Wissenschaften, aber erst rund hundert Jahre später weiteren Kreisen bekannt),[11] von Jean-Robert Argand (in einem obskuren Privatdruck 1806, den aber Legendre zur Kenntnis kam und der 1813 breiteren Kreisen bekannt wurde) und Gauß (unveröffentlicht) entdeckt. Gauß erwähnt die Darstellung explizit in einem Brief an Friedrich Bessel vom 18. Dezember 1811.[12] Nach Argand wird die geometrische Darstellung in der Zahlenebene manchmal auch Arganddiagramm genannt.
Als Begründer der komplexen Analysis gilt Augustin-Louis Cauchy in einer 1814 bei der französischen Akademie eingereichten Arbeit über Integration im Komplexen, die aber erst 1825 veröffentlicht wurde. 1821 definierte er in seinem Lehrbuch Cours d’analyse eine Funktion einer komplexen Variablen in die komplexe Zahlenebene und bewies viele grundlegende Sätze der Funktionentheorie.
Ausgehend von philosophischen Ideen Immanuel Kants fand William Rowan Hamilton 1833 eine logisch einwandfreie Begründung der komplexen Zahlen als geordnetes Paar reeller Zahlen. Er deutete die komplexe Zahl als Zahlenpaar und definierte Addition beziehungsweise die Multiplikation durch:[13]
Heute machen diese Dinge keinerlei begriffliche oder tatsächliche Schwierigkeiten. Durch die Einfachheit der Definition, der bereits erläuterten Bedeutung und Anwendungen in vielen Wissenschaftsgebieten stehen die komplexen Zahlen den reellen Zahlen in nichts nach. Der Begriff der „imaginären“ Zahlen, im Sinne von eingebildeten bzw. unwirklichen Zahlen, hat sich also im Laufe der Jahrhunderte zu einer schiefen, aber beibehaltenen Bezeichnung entwickelt.
Bedeutung
Komplexe Zahlen in der Physik
Komplexe Zahlen spielen in der Grundlagenphysik eine zentrale Rolle. In der Quantenmechanik wird der Zustand eines physikalischen Systems als Element eines (projektiven) Hilbertraums über den komplexen Zahlen aufgefasst. Komplexe Zahlen finden Verwendung bei der Definition von Differentialoperatoren in der Schrödingergleichung und der Klein-Gordon-Gleichung. Für die Dirac-Gleichung benötigt man eine Zahlbereichserweiterung der komplexen Zahlen, die Quaternionen. Alternativ ist eine Formulierung mit Pauli-Matrizen möglich, die aber die gleiche algebraische Struktur wie die Quaternionen aufweisen.
Komplexe Zahlen haben in der Physik und Technik eine wichtige Rolle als Rechenhilfe. So lässt sich insbesondere die Behandlung von Differentialgleichungen zu Schwingungsvorgängen vereinfachen, da sich damit die komplizierten Beziehungen in Zusammenhang mit Produkten von Sinus- bzw. Kosinusfunktionen durch Produkte von Exponentialfunktionen ersetzen lassen, wobei lediglich die Exponenten addiert werden müssen. So fügt man dazu beispielsweise in der komplexen Wechselstromrechnung geeignete Imaginärteile in die reellen Ausgangsgleichungen ein, die man bei der Auswertung der Rechenergebnisse dann wieder ignoriert. Dadurch werden in der Zwischenrechnung harmonische Schwingungen (reell) zu Kreisbewegungen in der komplexen Ebene ergänzt, die mehr Symmetrie aufweisen und deswegen einfacher zu behandeln sind.
In der Optik werden die brechenden und absorbierenden Effekte einer Substanz in einer komplexen, wellenlängenabhängigen Permittivität (Dielektrizitätskonstante) oder dem komplexen Brechungsindex zusammengefasst, die wiederum auf die elektrische Suszeptibilität zurückgeführt wird.
In der Fluiddynamik werden komplexe Zahlen eingesetzt, um ebene Potentialströmungen zu erklären und zu verstehen. Jede beliebige komplexe Funktion eines komplexen Arguments stellt immer eine ebene Potentialströmung dar – der geometrische Ort entspricht dem komplexen Argument in der gaußschen Zahlenebene, das Strömungspotenzial dem Realteil der Funktion, und die Stromlinien den Isolinien des Imaginärteils der Funktion mit umgekehrtem Vorzeichen. Das Vektorfeld der Strömungsgeschwindigkeit entspricht der konjugiert komplexen ersten Ableitung der Funktion. Durch das Experimentieren mit verschiedenen Überlagerungen von Parallelströmung, Quellen, Senken, Dipolen und Wirbeln kann man die Umströmung unterschiedlicher Konturen darstellen. Verzerren lassen sich diese Strömungsbilder durch konforme Abbildung – das komplexe Argument wird durch eine Funktion des komplexen Arguments ersetzt. Beispielsweise lässt sich die Umströmung eines Kreiszylinders (Parallelströmung + Dipol) in die Umströmung eines tragflügel-ähnlichen Profils (Joukowski-Profil) verzerren und die Rolle des tragenden Wirbels an einer Flugzeug-Tragfläche studieren. So nützlich diese Methode zum Lernen und Verstehen ist, zur genauen Berechnung reicht sie im Allgemeinen nicht aus.
Komplexe Zahlen in der Elektrotechnik
In der Elektrotechnik besitzt die Darstellung elektrischer Größen mit Hilfe komplexer Zahlen weite Verbreitung. Sie wird bei der Berechnung von zeitlich sinusförmig veränderlichen Größen wie elektrischen und magnetischen Feldern verwendet. Bei der Darstellung einer sinusförmigen Wechselspannung als komplexe Größe und entsprechenden Darstellungen für Widerstände, Kondensatoren und Spulen vereinfachen sich die Berechnungen des elektrischen Stromes, der Wirk- und der Blindleistung in einer Schaltung. Die durch Differentialquotienten oder Integrale gegebene Verkopplung geht über in eine Verkopplung durch trigonometrische Funktionen; die Berechnung der Zusammenhänge lässt sich damit wesentlich erleichtern. Auch das Zusammenwirken mehrerer verschiedener sinusförmiger Spannungen und Ströme, die zu unterschiedlichen Zeitpunkten ihre Nulldurchgänge haben können, lässt sich in komplexer Rechnung leicht darstellen. Genaueres über dieses Thema steht im Artikel über die komplexe Wechselstromrechnung.
In den letzten Jahren hat die digitale Signalverarbeitung außerordentlich an Bedeutung gewonnen, deren Fundament die Rechnung mit komplexen Zahlen bildet.
Körpertheorie und algebraische Geometrie
Der Körper der komplexen Zahlen ist der algebraische Abschluss des Körpers der reellen Zahlen.
Je zwei algebraisch abgeschlossene Körper mit derselben Charakteristik und demselben Transzendenzgrad über ihrem Primkörper (der durch die Charakteristik festgelegt ist) sind (ringtheoretisch) isomorph.[14] Bei einem Körper von Charakteristik 0 mit überabzählbarem Transzendenzgrad ist dieser gleich der Kardinalität des Körpers. Körpertheoretisch bilden die komplexen Zahlen also den einzigen algebraisch abgeschlossenen Körper mit Charakteristik 0 und der Kardinalität des Kontinuums. Eine Konstruktion des Körpers der komplexen Zahlen ist mithilfe dieser Feststellung auch rein algebraisch etwa als Erweiterung des algebraischen Abschlusses der rationalen Zahlen um viele transzendente Elemente möglich. Eine weitere Konstruktion liefert ein Ultraprodukt: Hierzu bilde man zu jedem endlichen Körper seinen algebraischen Abschluss und bilde von ihnen das Ultraprodukt bezüglich eines beliebigen freien Ultrafilters. Aus dem Satz von Łoś folgt, dass dieses Ultraprodukt ein algebraisch abgeschlossener Körper mit Charakteristik 0 ist, die Kardinalität des Kontinuums folgt aus mengentheoretischen Überlegungen.[15]
Unter dem Schlagwort Lefschetz-Prinzip werden verschiedene Sätze zusammengefasst, die es erlauben, Ergebnisse der algebraischen Geometrie, die über den komplexen Zahlen bewiesen werden, auf andere algebraisch abgeschlossene Körper mit Charakteristik 0 zu übertragen (was maßgeblich auf der Vollständigkeit der Theorie der algebraisch abgeschlossenen Körper mit Charakteristik 0 aufbaut). Die Betrachtung des komplexen Falls bietet den Vorteil, dass dort topologische und analytische Methoden eingesetzt werden können, um algebraische Ergebnisse zu erhalten.[16] Obige Ultraproduktkonstruktion erlaubt die Übertragung von Ergebnissen im Fall einer Charakteristik ungleich 0 auf die komplexen Zahlen.[17]
Spektraltheorie und Funktionalanalysis
Viele Ergebnisse der Spektraltheorie gelten für komplexe Vektorräume in größerem Umfang als für reelle. So treten z. B. komplexe Zahlen als Eigenwerte reeller Matrizen auf (dann jeweils zusammen mit dem konjugiert-komplexen Eigenwert). Das erklärt sich dadurch, dass das charakteristische Polynom der Matrix aufgrund der algebraischen Abgeschlossenheit von über den komplexen Zahlen stets in Linearfaktoren zerfällt. Dagegen gibt es reelle Matrizen ohne reelle Eigenwerte, während das Spektrum eines beliebigen beschränkten Operators auf einem komplexen (mindestens eindimensionalen) Banachraum nie leer ist.[18] In der Spektraltheorie auf Hilberträumen lassen sich Sätze, die im reellen Fall nur für selbstadjungierte Operatoren gelten, im komplexen Fall oft auf normale Operatoren übertragen.
Auch in weiteren Teilen der Funktionalanalysis spielen die komplexen Zahlen eine besondere Rolle. So wird etwa die Theorie der C*-Algebren meist im Komplexen betrieben, die harmonische Analyse befasst sich mit Darstellungen von Gruppen auf komplexen Hilberträumen.
Funktionentheorie und komplexe Geometrie
Das Studium differenzierbarer Funktionen auf Teilmengen der komplexen Zahlen ist Gegenstand der Funktionentheorie. Sie ist in vieler Hinsicht starrer als die reelle Analysis und lässt weniger Pathologien zu. Beispiele sind die Aussage, dass jede in einem Gebiet differenzierbare Funktion bereits beliebig oft differenzierbar ist, oder der Identitätssatz für holomorphe Funktionen.
Die Funktionentheorie ermöglicht oft auch Rückschlüsse auf rein reelle Aussagen, beispielsweise lassen sich manche Integrale mit dem Residuensatz berechnen. Ein wichtiges Einsatzgebiet dieser Methoden ist die analytische Zahlentheorie, die Aussagen über ganze Zahlen auf Aussagen über komplexe Funktionen zurückführt, häufig in der Form von Dirichletreihen. Ein prominentes Beispiel ist die Verbindung zwischen Primzahlsatz und riemannscher ζ-Funktion. In diesem Zusammenhang spielt die riemannsche Vermutung eine zentrale Rolle.
Die oben erwähnte Starrheit holomorpher Funktionen tritt noch stärker bei globalen Fragen in Erscheinung, d. h. beim Studium komplexer Mannigfaltigkeiten. So gibt es auf einer kompakten komplexen Mannigfaltigkeit keine nichtkonstanten globalen holomorphen Funktionen; Aussagen wie der Einbettungssatz von Whitney sind im Komplexen also falsch. Diese sogenannte „analytische Geometrie“ (nicht mit der klassischen analytischen Geometrie von René Descartes zu verwechseln!) ist auch eng mit der algebraischen Geometrie verknüpft, viele Ergebnisse lassen sich übertragen. Die komplexen Zahlen sind auch in einem geeigneten Sinne ausreichend groß, um die Komplexität algebraischer Varietäten über beliebigen Körpern der Charakteristik 0 zu erfassen (Lefschetz-Prinzip).
Anmerkungen
- ↑ Die durch
- ↑ Die durch
Überdies ist mit der additiven Arithmetik nicht verträglich. - ↑ Bei Verwendung des Zeichens ist die Konvention noch deutlicher erklärbar, als es bei Verwendung von wäre, dass bei jedem Vorkommen dieselbe Lösung von (dasselbe „Vorzeichen“) zu nehmen ist, und z. B. auch die Konvention, dass die -Halbachse durch eine Drehung der positiven reellen Halbachse im mathematisch positiven Sinn erreicht wird.
Dennoch bleiben alle algebraischen Aussagen gültig, wenn überall durch ersetzt wird.
Literatur
- Paul Nahin: An imaginary tale: The story of . Princeton University Press, 1998. ISBN 978-0-691-14600-3
- Reinhold Remmert: Komplexe Zahlen. In D. Ebbinghaus u. a. (Hrsg.): Zahlen. Springer, 1983.
Verwandte Themen
- Gaußsche Zahlen und Eisenstein-Zahlen sind eine Verallgemeinerung der ganzen Zahlen auf die komplexen Zahlen.
- Hyperkomplexe Zahlen verallgemeinern die algebraische Struktur der komplexen Zahlen.
- Komplexwertige Funktionen bilden komplexe Zahlen auf komplexe Zahlen ab.
Weblinks
- Schriften, Dokumentationen
- Programme zur direkten Ausführung
- Zur Geschichte
- Geschichte der komplexen Zahlen
- How Imaginary Numbers Were Invented auf Youtube mit wissenschaftlicher Literatur in der Videobeschreibung
Einzelnachweise
- ↑ Eberhard Freitag, Rolf Busam: Funktionentheorie 1: Mit Lösungshinweisen zu 420 Übungsaufgaben. 4. Auflage. Springer, Berlin 2007, ISBN 978-3-540-31764-7.
- ↑ a b complex sine and cosine. In: PlanetMath. (englisch)
- ↑ a b complex tangent and cotangent. In: PlanetMath. (englisch)
- ↑ a b Eric W. Weisstein: Hyperbolic Functions. In: MathWorld (englisch).
- ↑ Complex hyperbolic tangent. Abgerufen am 20. August 2022.
- ↑ Complex hyperbolic cotangent. Abgerufen am 20. August 2022.
- ↑ Ehrhard Behrends: Analysis. 6. Auflage. Band 1. Springer Spektrum, Wiesbaden 2015, ISBN 978-3-658-07122-6, doi:10.1007/978-3-658-07123-3.
- ↑ Helmuth Gericke: Geschichte des Zahlbegriffs. Bibliographisches Institut, Mannheim 1970, S. 57–67.
- ↑ Remmert: Komplexe Zahlen. In: Ebbinghaus u. a.: Zahlen. Springer 1983, S. 48.
- ↑ Nahin: An imaginary tale. S. 56.
- ↑ Stillwell: Mathematics and its History. Springer, S. 287.
- ↑ Morris Kline: Mathematical thought from ancient to modern times. Oxford University Press, 1972, Band 2, S. 631. Der Brief ist in Band 8 der Werke, S. 90 abgedruckt. Gauss verwendet die komplexe Zahlenebene wesentlich in seinem Beweis des Fundamentalsatzes der Algebra von 1816.
Felix Klein: Geschichte der Mathematik im 19. Jahrhundert. S. 28. - ↑ Heinz-Wilhelm Alten: 4000 Jahre Algebra. Geschichte, Kulturen, Menschen. Springer, Berlin u. a. 2003, ISBN 3-540-43554-9, S. 310.
- ↑ Daher kommt auch, dass es überabzählbar viele „wilde“ Automorphismen von gibt; siehe Paul B. Yale: Automorphisms of the Complex Numbers. maa.org (PDF; 217 kB).
- ↑ H. Schoutens: The Use of Ultraproducts in Commutative Algebra. (PDF; 305 kB) Springer, 2010, S. 16.
- ↑ Gerhard Frey, Hans-Georg Rück: The Strong Lefschetz Principle in Algebraic Geometry. In: manuscripta mathematica. Band 55, 1986, S. 385 (online).
- ↑ Frey, Rück, S. 389.
- ↑ Dirk Werner: Funktionalanalysis. 7. Auflage. Springer, 2011, ISBN 978-3-642-21016-7, S. 261.