Exponentialfamilie

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 28. September 2021 um 20:12 Uhr durch imported>Zooloo(208232) (gr (kongruenz)).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

In der Wahrscheinlichkeitstheorie und in der Statistik ist eine Exponentialfamilie (oder exponentielle Familie) eine Klasse von Wahrscheinlichkeitsverteilungen einer ganz bestimmten Form. Man wählt diese spezielle Form, um bestimmte Rechenvorteile auszunutzen oder aus Gründen der Verallgemeinerung. Exponentialfamilien sind in gewissem Sinne sehr natürliche Verteilungen und eine dominierte Verteilungsklasse, was viele Vereinfachungen in der Handhabung mit sich bringt. Das Konzept der Exponentialfamilien geht zurück auf[1] E. J. G. Pitman,[2] G. Darmois,[3] und B. O. Koopman[4] (1935–6).

Einparametrige Exponentialfamilie

Definition

Eine Familie von Wahrscheinlichkeitsmaßen auf dem Messraum mit heißt eine einparametrige Exponentialfamilie, wenn es ein σ-endliches Maß gibt, so dass alle eine Dichtefunktion der Gestalt

bezüglich besitzen. Meist handelt es sich bei

Dabei ist

eine messbare Funktion, die natürliche suffiziente Statistik oder kanonische Statistik der Exponentialfamilie. Ebenso ist

eine messbare Funktion. Die Funktion

wird Normierungsfunktion oder Normierungskonstante genannt und garantiert, dass die in der Definition eines Wahrscheinlichkeitsmaßes geforderte Normierung gegeben ist. Des Weiteren ist

eine beliebige reelle Funktionen des Parameters.

Beispiele

Ein elementares Beispiel sind die Binomialverteilungen auf mit . Sie besitzen die Wahrscheinlichkeitsfunktion (beziehungsweise die Dichtefunktion bezüglich des Zählmaßes)

mit . Somit ist die Binomialverteilung teil einer Exponentialfamilie und wird charakterisiert durch

.

Ein weiteres Beispiel sind die Exponentialverteilungen. Sie sind auf definiert mit und besitzen die Wahrscheinlichkeitsdichtefunktion

Somit ist in diesem Fall

.

Zu beachten ist, dass eine einparametrige Exponentialfamilie durchaus eine multivariate Verteilung sein kann. Einparametrig bedeutet hier nur, dass die Dimensionalität des „Formparameters“ eins ist. Ob die definierte Wahrscheinlichkeitsverteilung univariat oder multivariat ist, hängt von der Dimensionalität des Grundraumes ab, an die keine Anforderungen gestellt sind.

Alternative Definitionen

Die Definitionen einer Exponentialfamilie unterscheiden sich meist in den folgenden Punkten:

  • Nicht alle Autoren schreiben die Funktionen und als Produkt vor die Exponentialfunktion, teilweise stehen sie auch als Summe in der Exponentialfunktion, manchmal mit negativem Vorzeichen. So finden sich die Definitionen
.
Diese unterschiedlich definierten Funktionen lassen sich meist problemlos ineinander umrechen. Dennoch ist bei einer Angabe der Funktionen und darauf zu achten, wie genau diese definiert werden.
  • Manche Autoren versehen die Dichtefunktion noch mit einer charakteristischen Funktion bezüglich einer Menge . Die Dichtefunktion ist dann gegeben als
.
Dabei soll die Wahl der Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M } unabhängig vom Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vartheta } sein. Diese Definition ermöglicht es, gewisse Kriterien, die auf der Positivität der Dichtefunktion aufbauen, allgemeiner zu fassen. Solche Kriterien finden sich beispielsweise in regulären statistischen Modellen.

k-parametrische Exponentialfamilie

Definition

Eine Familie von Wahrscheinlichkeitsmaßen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (P_\vartheta)_{\vartheta \in \Theta} } auf dem Messraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X, \mathcal A) } mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Theta \subset \R^k } heißt eine k-parametrische Exponentialfamilie, wenn es ein σ-endliches Maß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu } gibt, so dass alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_\vartheta } die Dichtefunktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x, \vartheta)=h(x) A(\vartheta) \exp \left(\sum_{i=1}^k\eta_i(\vartheta) T_i(x) \right) }

bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu } besitzen. Oftmals wird der Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vartheta=(\vartheta_1, \dots, \vartheta_k) } geschrieben. Dabei sind

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h, T_1, \dots, T_k: (X, \mathcal A) \to (\R, \mathcal B (\R)) }

messbare Funktionen und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A, \eta_1, \dots, \eta_k: \R^k \supset \Theta \to \R }

Funktionen des k-dimensionalen Parameters Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vartheta } . Hier wird wie im einparametrigen Fall die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T=(T_1,\dots, T_k) } die natürliche suffiziente Statistik oder die kanonische Statistik genannt.

Beispiel

Klassisches Beispiel für eine 2-parametrige Exponentialfamilie ist die Normalverteilung. Es ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X, \mathcal A)= (\R, \mathcal B (\R))} sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Theta=\R \times (0, \infty) } . Jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vartheta \in \Theta } ist dann von der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vartheta=(\vartheta_1, \vartheta_2) } . Mit den Parametrisierungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu=\vartheta_1 } sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma^2=\vartheta_2^2 } erhält man aus der üblichen Dichtefunktion der Normalverteilung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x, \vartheta_1, \vartheta_2)= \frac{1}{\sqrt{2 \pi \vartheta_2^2}} \exp \left( - \frac{\vartheta_1^2}{2 \vartheta_2^2}\right) \exp \left( \frac{\vartheta_1}{\vartheta_2^2}x -\frac{1}{2 \vartheta_2^2}x^2\right) } .

Somit ist die Normalverteilung Teil einer zweiparametrigen Exponentialfamilie mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A(\vartheta_1, \vartheta_2)= \frac{1}{\sqrt{2 \pi \vartheta_2^2}} \exp \left( - \frac{\vartheta_1^2}{2 \vartheta_2^2}\right), \quad T_1(x)=x, \quad T_2(x)=x^2, \quad \eta_1(\vartheta_1, \vartheta_2)=\frac{\vartheta_1}{\vartheta_2^2}, \quad \eta_2(\vartheta_1, \vartheta_2)= -\frac{1}{2 \vartheta_2^2} } .

Auch hier gilt wieder: eine k-parametrige Exponentialfamilie kann durchaus eine Wahrscheinlichkeitsverteilung in nur einer Dimension beschreiben. Die Zahl k gibt nur die Anzahl der Formparameter an, nicht die Dimensionalität der Verteilung. So ist im obigen Beispiel die Normalverteilung eindimensional, aber Teil einer 2-parametrigen Exponentialfamilie.

Ein weiteres Beispiel für eine 2-parametrige Exponentialfamilie ist die Gammaverteilung.

Alternative Definitionen

Für die k-parametrische Exponentialfamilie existieren dieselben Varianten in der Definition wie bereits im einparametrischen Fall besprochen wurden. Außerdem fordern manche Autoren noch zusätzlich in der Definition, dass folgende beide Eigenschaften gelten:

  1. Die Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta_1, \dots, \eta_k } sind linear unabhängig
  2. Die Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1,T_1, \dots, T_k } sind für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_\vartheta } fast sicher linear unabhängig.

Mit diesen zusätzlichen Forderungen lassen sich beispielsweise Aussagen über die Kovarianzmatrix von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T } treffen.

Die natürliche Parametrisierung

Sowohl im einparametrischen als auch im k-parametrischen Fall sagt man, dass die Exponentialfamilie in der natürlichen Parametrisierung vorliegt, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta(\vartheta)=\vartheta } ist.

Eigenschaften

Suffizienz

Für die Exponentialfamilie ist die kanonische Statistik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T } immer eine suffiziente Statistik. Dies folgt direkt aus dem Neyman-Kriterium für die Suffizienz. Daher wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T } auch als natürliche suffiziente Statistik bezeichnet.

Score-Funktion

Für eine einparametrige Exponentialfamilie ist die Score-Funktion gegeben durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_\vartheta(x):= \frac{\partial}{\partial\vartheta} \ln f(x,\vartheta)=\eta'(\vartheta) T(x)+ \frac{A'(\vartheta)}{A(\vartheta)} } .

Bei natürlicher Parametrisierung vereinfacht sich dies zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_\vartheta(x)=T(x)+ \frac{A'(\vartheta)}{A(\vartheta)} } .

Fisher-Information

Aus der Score-Funktion lässt sich die Fisher-Information ableiten. Sie lautet

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I(\vartheta)= \operatorname{Var}_\vartheta(S_\vartheta)= \left[ \eta'(\vartheta)\right]^2 \cdot \operatorname{Var}_\vartheta(T(x)) } .

Bei natürlicher Parametrisierung ergibt sich für die Fisher-Information somit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I(\vartheta)= \operatorname{Var}_\vartheta(T(x)) } .

Rolle in der Statistik

Klassisches Schätzen: Suffizienz

Nach dem Pitman-Koopman-Darmois-Theorem gibt es unter Wahrscheinlichkeitsfamilien, deren Träger nicht von den Parametern abhängt, nur bei den Exponentialfamilien suffiziente Statistiken, deren Dimension bei wachsender Stichprobengröße beschränkt bleibt. Etwas ausführlicher: Seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_n,\ n = 1, 2, 3, \dots} unabhängig und identisch verteilte Zufallsvariablen, deren Wahrscheinlichkeitsverteilungsfamilie bekannt ist. Nur wenn diese Familie eine Exponentialfamilie ist, gibt es eine (möglicherweise vektorielle) suffiziente Statistik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T(X_1, \dots, X_n)} , deren Anzahl skalarer Komponenten nicht ansteigt, sollte der Stichprobenumfang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} erhöht werden.

Bayessches Schätzen: konjugierte Verteilungen

Exponentialfamilien sind auch für die bayessche Statistik wichtig. In der bayesschen Statistik wird eine A-priori-Wahrscheinlichkeitsverteilung mit einer Likelihood-Funktion multipliziert und dann normiert, um auf die A-posteriori-Wahrscheinlichkeitsverteilung zu kommen (siehe Satz von Bayes). Falls die Likelihood zu einer Exponentialfamilie gehört, existiert auch eine Familie konjugierter A-priori-Verteilungen, die oft ebenfalls eine Exponentialfamilie ist. Eine konjugierte A-priori-Verteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi} für den Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta} einer Exponentialfamilie ist definiert durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi(\eta) \propto \exp(-\eta^{\top} \alpha - \beta\, A(\eta)),}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha \in \mathbb{R}^n} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta>0} Hyperparameter sind (Parameter, die im Rahmen des Modells nicht geschätzt, sondern festgelegt werden).

Im Allgemeinen gehört die Likelihood-Funktion keiner Exponentialfamilie an, deshalb existiert im Allgemeinen auch keine konjugierte A-priori-Verteilung. Die A-posteriori-Verteilung muss dann mit numerischen Methoden berechnet werden.

Hypothesentests: gleichmäßig bester Test

Die einparametrische Exponentialfamilie zählt zu den Verteilungsklassen mit monotonem Dichtequotienten in der kanonischen Statistik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T } , wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta } monoton wachsend ist. Daher existiert für das einseitige Testproblem mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Theta_0= \{\vartheta \in \Theta \, | \, \vartheta \leq \vartheta_0\} \quad \text{und} \quad \Theta_1 =\{\vartheta \in \Theta \, | \, \vartheta > \vartheta_0\} }

ein gleichmäßig bester Test zu einem vorgegebenen Niveau Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha } . Eine explizite Beschreibung des Tests mit skizzierter Herleitung aus dem Neyman-Pearson-Lemma findet sich hier.

Literatur

  • E. L. Lehmann, Casella, G.: Theory of Point Estimation 1998, ISBN 0-387-98502-6, S. 2nd ed., sec. 1.5.
  • Robert W. Keener: Statistical Theory: Notes for a Course in Theoretical Statistics. Springer, 2006, S. 27–28, 32–33.

Einzelnachweise

  1. Erling Andersen: Sufficiency and Exponential Families for Discrete Sample Spaces. In: Journal of the American Statistical Association. 65, Nr. 331, September 1970, S. 1248–1255. Modul:Vorlage:Handle * library URIutil invalid.
  2. E. Pitman: Sufficient statistics and intrinsic accuracy. In: Proc. Camb. phil. Soc.. 32, 1936, S. 567–579.
  3. G. Darmois: Sur les lois de probabilites a estimation exhaustive. In: C.R. Acad. sci. Paris. 200, 1935, S. 1265–1266.
  4. B Koopman: On distribution admitting a sufficient statistic. In: Trans. Amer. math. Soc.. 39, 1936, S. 399–409. Modul:Vorlage:Handle * library URIutil invalid.