Zusammengesetzte Poisson-Verteilung

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 19. Januar 2020 um 21:14 Uhr durch imported>JonskiC(1734805) (+lf).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die zusammengesetzte Poisson-Verteilung ist eine Verallgemeinerung der Poisson-Verteilung und spielt eine wichtige Rolle bei Poisson-Prozessen und der Theorie der unendlichen Teilbarkeit. Im Gegensatz zu vielen anderen Verteilungen ist bei der zusammengesetzten Poisson-Verteilung nicht a priori festgelegt, ob sie stetig oder diskret ist. Sie sollte nicht mit der gemischten Poisson-Verteilung verwechselt werden.

Definition

Ist eine Poisson-verteilte Zufallsvariable mit Erwartungswert und sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_i)_{i \in \mathbb{N}} } unabhängig und identisch verteilte Zufallsvariablen, so heißt die Zufallsvariable

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y:=\sum_{i=1}^NX_i }

zusammengesetzt Poisson-verteilt . Sind die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_i } alle auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N}_0 } definiert, also diskret, so heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y } diskret zusammengesetzt Poisson-verteilt. In beiden Fällen schreibt man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y \sim CPoi_\mu } wobei das Wahrscheinlichkeitsmaß von ist. Wahrscheinlichkeitsdichten oder Wahrscheinlichkeitsfunktionen sowie Verteilungsfunktionen lassen sich nur in Spezialfällen geschlossen angeben, aber eventuell mit dem Panjer-Algorithmus approximieren.

Gelegentlich finden sich auch in der deutschen Literatur die Begriffe die englischen Begriffe Compound Poisson und discrete compound Poisson.

Eigenschaften

Erwartungswert

Für den Erwartungswert gilt nach der Formel von Wald:

.

Varianz

Nach der Blackwell-Girshick-Gleichung gilt

wenn die zweiten Momente von existieren. Dabei folgt die zweite Gleichheit aus dem Verschiebungssatz.

Schiefe

Mittels der Kumulanten ergibt sich für die Schiefe

.

Wölbung

Für den Exzess ergibt sich mittels der Kumulanten

.

Kumulanten

Die kumulantenerzeugende Funktion ist

wobei die Momenterzeugende Funktion von ist. Damit gilt für alle Kumulanten

.

Momenterzeugende Funktion

Die momenterzeugende Funktion ergibt sich als Verkettung von der wahrscheinlichkeitserzeugenden Funktion der Poisson-Verteilung und der momenterzeugenden Funktion der :

.

Charakteristische Funktion

Die charakteristische Funktion ergibt sich als Verkettung von der wahrscheinlichkeitserzeugenden Funktion der Poisson-Verteilung und der charakteristischen Funktion der :

Wahrscheinlichkeitserzeugende Funktion

Sind die diskret, so ist die wahrscheinlichkeitserzeugende Funktion definiert, und ergibt sich als Verkettung der wahrscheinlichkeitserzeugenden Funktion von und von zu

.

Unendliche Teilbarkeit

Eine zusammengesetzt Poisson-verteilte Zufallsvariable ist unendlich teilbar. Es lässt sich zeigen, dass eine Zufallsvariable auf genau dann unendlich teilbar ist, wenn die Zufallsvariable diskret zusammengesetzt Poisson-verteilt ist.

Beziehung zu anderen Verteilungen

Beziehung zur Poisson-Verteilung

Ist fast sicher, so fallen Poisson-Verteilung und zusammengesetzte Poisson-Verteilung zusammen.

Beziehung zur geometrischen Verteilung und zur negativen Binomialverteilung

Da sowohl die geometrische Verteilung als auch die negative Binomialverteilung unendlich teilbar sind, handelt es sich um zusammengesetzte Poisson-Verteilungen. Sie entstehen bei Kombination mit der logarithmischen Verteilung. Die Parameter der negativen Binomialverteilung errechnen sich als und .

Weblinks

Literatur

  • Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.